$B_{\left ( {{\text {TOP}}_n } \right )^ \sim }$ and the surgery obstruction
HTML articles powered by AMS MathViewer
- by Frank Quinn PDF
- Bull. Amer. Math. Soc. 77 (1971), 596-600
References
- William Browder, Free $Z_{p}$-actions on homotopy spheres, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 217–226. MR 0276982
- Sylvain Cappell, A splitting theorem for manifolds and surgery groups, Bull. Amer. Math. Soc. 77 (1971), 281–286. MR 285010, DOI 10.1090/S0002-9904-1971-12720-9 3. T. Petrie, Surgery groups over finite fields (to appear).
- Frank Quinn, A geometric formulation of surgery, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 500–511. MR 0282375
- Frank Quinn, A geometric formulation of surgery, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 500–511. MR 0282375 6. F. Quinn, Geometric surgery (to appear). 7. D. Sullivan, Triangulating and smoothing homotopy equivalences, Lecture Notes, Princeton University, Princeton, N. J., 1967.
- Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR 0494074
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- Friedhelm Waldhausen, Whitehead groups of generalized free products, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 155–179. MR 0370576
Additional Information
- Journal: Bull. Amer. Math. Soc. 77 (1971), 596-600
- MSC (1970): Primary 57D65, 55F60, 57C50; Secondary 55C05, 57B10, 55B20, 20F25
- DOI: https://doi.org/10.1090/S0002-9904-1971-12766-0
- MathSciNet review: 0276980