ON THE MEAN CURVATURE OF SUBMANIFOLDS OF EUCLIDEAN SPACE

BY BANG-YEN CHEN

Communicated by S. Sternberg, April 12, 1971

Let \(x : M^n \to E^m \) be an immersion of an \(n \)-dimensional manifold \(M^n \) in a euclidean space \(E^m \) of dimension \(m \) \((m > n > 1)\), and let \(\nabla \) and \(\nabla' \) be the covariant differentiations of \(M^n \) and \(E^m \), respectively. Let \(u \) and \(v \) be two tangent vector fields on \(M^n \). Then the second fundamental form \(h \) is given by

\[
\nabla'_u v = \nabla_u v + h(u, v).
\]

If \(\{e_1, \ldots, e_n\} \) is an orthonormal basis in the tangent space \(T_p(M) \) at \(p \in M^n \), then the mean curvature vector \(H(p) \) at \(p \) is given by

\[
H(p) = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i).
\]

Let \(\langle \ , \ \rangle \) denote the scalar product of \(E^m \). If there exists a function \(f \) on \(M \) such that \(\langle h(u, v), H \rangle = f(u, v) \) for all tangent vector fields \(u, v \) on \(M^n \), then \(M^n \) is called a pseudo-umbilical submanifold of \(E^m \).

If the covariant derivative of \(H \) in \(E^m \) is tangent to \(x(M^n) \) everywhere, then \(H \) is said to be parallel in the normal bundle. In [2], [3], the author proved that if \(M^n \) is closed, then the mean curvature vector \(H \) satisfies

\[
\int_{M^n} \langle H, H \rangle^{n/2} dV \geq c_n,
\]

where \(dV \) denotes the volume element of \(M^n \) and \(c_n \) is the area of the unit \(n \)-sphere. The equality sign of (3) holds when and only when \(M^n \) is imbedded as a hypersphere in an \((n + 1)\)-dimensional linear subspace of \(E^m \). It is interesting to know whether the inequality (3) can be improved for some special submanifolds of \(E^m \).

The main purpose of this paper is to announce some results in this direction together with some results on pseudo-umbilical submanifolds. Details will appear elsewhere.

Key words and phrases. Mean curvature vector, minimal surface, pseudo-umbilical submanifold, Clifford torus, \(a \)th curvatures of first and second kinds.

1 This work has been supported in part by NSF Grant GU-2648.
By studying the behaviors of the mean curvature vector H we can prove

Lemma 1. The position vector field X of M^n in E^m is parallel to the mean curvature vector H when and only when M^n is either a minimal submanifold of E^m or a minimal submanifold of a hypersphere of E^m centered at the origin.

By using Lemma 1, we can prove

Proposition 1 (Yano-Chen [5]). M^n is a pseudo-umbilical submanifold of E^m such that the mean curvature vector H is parallel in the normal bundle when and only when M^n is either a minimal submanifold of E^m or a minimal submanifold of a hypersphere of E^m.

If the codimension is equal to 2, then a pseudo-umbilical submanifold of E^m with constant mean curvature is always a pseudo-umbilical submanifold such that the mean curvature vector is parallel in the normal bundle. Hence we have

Proposition 2. M^n is a pseudo-umbilical submanifold of E^{n+2} with constant mean curvature when and only when M^n is either a minimal submanifold of E^{n+2} or a minimal hypersurface of a hypersphere of E^{n+2}.

Let F be a field and $H_i(M^n, F)$ denote the ith cohomology group of M^n over the field F. Let $\beta(M^n) = \max \{ \sum_{i=0}^n \dim H_i(M^n, F); F \text{ fields} \}$. Then, by verifying the properties of the length of second fundamental form h, we can prove

Theorem I. Let M^n be an n-dimensional closed manifold immersed in E^m with nonnegative scalar curvature. Then we have

$$\int_{M^n} \langle H, H \rangle^{n/2} dV > a \beta(M^n),$$

where

$\begin{align*}
\text{if } n \text{ is even,} & \quad a = (4n^n)^{-1/2c_n}, \\
\text{if } n \text{ is odd,} & \quad a = (2n^n c_{m-n-1} c_{m+n-1})^{-1/2}(c_{2n})^{1/2} c_{m-1},
\end{align*}$

Theorem II. Let M^2 be a flat torus in E^4. Then we have

$$\int_{M^2} \langle H, H \rangle dV \geq 2\pi^2.$$

Then the equality sign of (6) holds when and only when M^2 is a Clifford torus in E^4.

Proof (sketch). The proof of (6) follows from a direct computation of the first curvature of second kind, $\lambda_1(\tilde{\phi})$, (for the definition,
see [1]) and the relations between the mean curvature and λ_1. If the equality of (6) holds, then we can prove that M^2 is a minimal surface of a 3-sphere in E^4. From this we see that M^2 is a Clifford torus in E^4. The converse of this is trivial.

For each unit normal vector e to $x(M^n)$ at $x(p)$, let h_e be the linear transformation from the tangent space $T_p(M)$ into itself defined by

$$(7) \quad \langle h_e(u), v \rangle = \langle h(u, v), e \rangle$$

for all tangent vectors u, v at p. Let $K(p, e) = \det(h_e)$. Then $K(p, e)$ is called the Lipschitz-Killing curvature at (p, e). By deriving some integral formulas for the αth curvatures of first and second kinds (for the definitions, see [1]), we can prove

Theorem III. Let M^2 be an oriented closed surface in E^m. If M^2 is contained in a hypersphere of E^m, then M^2 is a pseudo-umbilical surface of E^m when and only when the Lipschitz-Killing curvature in the unit direction of the mean curvature vector H is maximal over the fibre of the unit normal bundle $B_v, B_v = \{ (p, e) : p \in M^2, e \text{ a unit normal vector in } E^m \text{ at } x(p) \}$.

Theorem IV (added in proof). The Veronese surface in E^5, the generalized Clifford tori in E^{n+2} and the n-sphere in E^{n+p} are the only closed pseudo-umbilical submanifolds M^n of E^{n+p} with mean curvature vector nowhere zero satisfying

$$(8) \quad R \geq \frac{n(p - 1)\langle H, H \rangle}{2p - 3} \left[(n - 1) \left(\frac{2p - 3}{p - 1} \right) - 1 \right]$$

where R denotes the scalar curvature of M^n.

The proof of this theorem will appear in a forthcoming paper “Pseudo-umbilical submanifolds in a Riemannian manifold of constant curvature. II”.

References

4. ———, On the total curvature of immersed manifolds. II. Mean curvature and length of second fundamental form (to appear).

Michigan State University, East Lansing, Michigan 48823