Bessel potentials. Inclusion relations among classes of exceptional sets
Authors:
David R. Adams and Norman G. Meyers
Journal:
Bull. Amer. Math. Soc. 77 (1971), 968-970
MSC (1970):
Primary 31C15, 31B15; Secondary 26A33
DOI:
https://doi.org/10.1090/S0002-9904-1971-12821-5
MathSciNet review:
0284607
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. N. Aronszajn and K. T. Smith, Functional spaces and functional completion, Ann. Inst. Fourier. Grenoble 6 (1955–1956), 125–185. MR 0080878
- 2. Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
- 3. Bent Fuglede, On generalized potentials of functions in the Lebesgue classes, Math. Scand. 8 (1960), 287–304. MR 159023, https://doi.org/10.7146/math.scand.a-10612
- 4. Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292 (1971). MR 277741, https://doi.org/10.7146/math.scand.a-10981
- 5. James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, https://doi.org/10.1007/BF02391014
- 6. S. J. Taylor, On the connexion between Hausdorff measures and generalized capacity, Proc. Cambridge Philos. Soc. 57 (1961), 524–531. MR 133420, https://doi.org/10.1017/s0305004100035581
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 31C15, 31B15, 26A33
Retrieve articles in all journals with MSC (1970): 31C15, 31B15, 26A33
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1971-12821-5