A STRUCTURE THEOREM FOR COMPLETE NONCOMPACT
HYPERSURFACES OF NONNEGATIVE CURVATURE

BY H. WU

Communicated by I. Singer, May 20, 1971

The convexity theorem of Sacksteder-van Heijenoort [4] states
that if M is a C^∞ n-dimensional ($n > 1$) complete orientable Riemannian
manifold of nonnegative sectional curvature with positive curvature
at one point, then every isometric immersion $x: M \to \mathbb{R}^{n+1}$ is an
imbedding and $x(M)$ bounds an open convex subset of \mathbb{R}^{n+1}; furthermore M is diffeomorphic to either \mathbb{R}^n or S^n (unit n-sphere). The
purpose of this note is to announce a structure theorem that complements the above result of Sacksteder and van Heijenoort. Full details
will appear in a forthcoming monograph on convexity and rigidity of hypersurfaces.

THEOREM. Let M be a C^∞ hypersurface in \mathbb{R}^{n+1} ($n > 1$) which is complete, noncompact, orientable with nonnegative sectional curvature, which
in addition all positive at one point, then:

1. The spherical image of M in the unit sphere S^n has a geodesically convex closure, which lies in a closed hemisphere.
2. The total curvature of M (cf. Chern-Lashof [2]) does not exceed one.
3. M is a pseudograph (see below for definition) over one of its tangent planes.
4. M has infinite volume.

COROLLARY. Suppose the sectional curvature of M is in fact everywhere positive, then:

5. The spherical map is a diffeomorphism onto a geodesically convex open subset of S^n. Consequently the spherical image lies in an open hemisphere.
6. Coordinates in \mathbb{R}^{n+1} can be so chosen that M is tangent to the hyperplane $x_{n+1} = 0$ at the origin, and there is a nonnegative strictly convex function (i.e. its Hessian is everywhere positive definite) $f(x_1, \cdots, x_n)$ defined in a convex domain of $\{x_{n+1} = 0\}$ such that M is exactly the graph of f.

REMARKS. (A) A C^∞ convex hypersurface M (i.e. M is the full boundary of an open convex set) in \mathbb{R}^{n+1} is said to form a pseudograph

AMS 1969 subject classifications. Primary 5374; Secondary 5375.

1 Sloan Fellow. Also partially supported by the National Science Foundation.
over the tangent plane \(H \) if and only if:

(a) \(M \) lies above \(H \), i.e. designating a closed half-space of \(H \) as being above \(H \), we have that \(M \) lies in this half-space.

(b) Let \(\pi : \mathbb{R}^{n+1} \rightarrow H \) be the orthogonal projection and let \(A = \pi(M) \). Then over the interior \(A^\circ \) (of \(A \) as a subset of \(H \)), \(M \) is the graph of a \(C^\infty \) function.

(c) For every \(a \in A - A^\circ \), \(M \cap \pi^{-1}(a) \) is a closed semi-infinite straight line segment.

(d) Every hyperplane strictly above \(H \) intersects \(M \) at a diffeomorph of the unit \((n-1)\)-sphere \(S^{n-1} \).

(B) When \(n = 2 \) and the curvature of \(M \) is everywhere positive, this theorem (as well as the theorem of Sacksteder-van Heijenoort) was first proved by Stoker [5].

(C) Assertions (2)-(6) above all follow from assertion (1). We actually prove a more general result than (1):

Proposition. Let \(C \) be an open convex subset of \(\mathbb{R}^{n+1} \) \((n \geq 1)\) with connected boundary \(M \) and let \(\gamma : M \rightarrow S^n \) be the spherical map (in the sense of Alexandrov, see Busemann [1]). Then the closure of \(\gamma(M) \) is geodesically convex.

The proof of this Proposition is achieved quite simply by employing the concept of the barrier cone of a convex set. See Rockafellar [3].

(D) Neither (1) nor the Proposition is true if the word “closure” is deleted. (Cf. Busemann [1, p. 25, (4.4)].)

(E) The Proposition has applications in the theory of convex surfaces, e.g. Alexandrov’s theory of spherical measures on an open convex surface (Busemann [1, p. 31]) or the rigidity and nonrigidity theorems of Pogorelov and Olovyanishnikov on open convex surfaces (Busemann [1, pp. 167–168]).

Bibliography

University of California, Berkeley, California 94720

Princeton University, Princeton, New Jersey 08540