TAMING IRREGULAR SETS OF HOMEOMORPHISMS

BY P. F. DUVALL, JR. AND L. S. HUSCH

Communicated by O. G. Harrold, July 12, 1971

1. Introduction. Let \mathcal{U} be an n-dimensional open connected manifold, $\mathcal{U}^\infty = \mathcal{U} \cup \{\infty\}$ the one-point compactification of \mathcal{U}, and d a metric on \mathcal{U}^∞. Suppose that h is a homeomorphism of \mathcal{U} onto itself and let h_∞ be the extension of h to \mathcal{U}^∞. If $p \in \mathcal{U}^\infty$, we say that h is regular at p if for each $\varepsilon > 0$ there is a $\delta > 0$ such that $d(p, q) < \delta$ implies that $d(h_\infty^n(p), h_\infty^n(q)) < \varepsilon$ for all n. If h is not regular at p, we say that p is an irregular point of h.

Homeomorphisms with finitely or countably many irregular points have been studied extensively \[4\]-\[10\], \[12\]. In this paper, we consider homeomorphisms h which satisfy

1. the set of irregular points of h is $P \cup \{\infty\}$, where P is a k-dimensional continuum with $k \leq n - 2$,

and seek conditions on h which imply that P is nicely embedded. Details of proofs will appear elsewhere.

2. Nice homeomorphisms. Suppose that \mathcal{U} and h are as above. We say that h is a nice homeomorphism if h satisfies (1),

2. for each $x \in \mathcal{U} - P$, $\lim_{n \to \infty} h^n(x) \in P$ and $\lim_{n \to -\infty} h^n(x) = \infty$, and

3. the mapping $f_h: \mathcal{U} \to P$ given by $f_h(x) = \lim_{n \to -\infty} h^n(x)$ exists and is continuous.

Remarks. If h satisfies (1), the work of T. Homma and S. Kinoshita \[5\] can be used to show that either h or h^{-1} satisfies (2), so that the strength of our assumptions is in (3). For example, let $h: S^1 \times R^2 \to S^1 \times R^2$ be defined by $h(x, t) = (k(x), \frac{1}{2}t)$ where $k: S^1 \to S^1$ is rotation through an irrational multiple of π radians. Then h satisfies (1) and (2) with $P = S^1 \times \{0\}$, but h does not satisfy (3).

The canonical example of a nice homeomorphism is the case where \mathcal{U} is an open mapping cylinder over P and h is a homeomorphism which "pushes in" along the product structure.

Proposition 1. If h is a nice homeomorphism, then

(i) P is an absolute neighborhood retract;

(ii) f_h is onto;

(iii) the fixed point set of h is P;

AMS 1970 subject classifications. Primary 57E20; Secondary 57A35, 57A40.

Research of the second author was partially supported by NSF Grant GP-15357.

Copyright © American Mathematical Society 1972
(iv) the inclusion \(P \subseteq \mathcal{U} \) is a homotopy equivalence;
(v) the natural projection \(p \) of \(\mathcal{U} - P \) onto the orbit space \(\hat{\mathcal{U}} \) of \(h|\mathcal{U} - P \) is a covering map;
(vi) \(\mathcal{U} \) is a closed \(n \)-manifold; and
(vii) \(f_h \) induces a map \(\hat{f}_h : \hat{\mathcal{U}} \to P \) such that \(\hat{f}_hp = f_h \).

(i)-(iv) follow from point set arguments and the fact that \(hf_h = f_h \).
(v)-(vii) follow from elementary facts about covering spaces and [11].

3. AFG sets and maps. If \(X \) is a continuum in the ENR \(M \), we say that \(X \) has property AFG if there is a neighborhood \(W \) of \(X \) in \(M \) such that for each neighborhood \(U \) of \(X \) in \(W \) there is a neighborhood \(V \) of \(X \), \(V \subset U \) such that each map of \(S^1 \) into \(V \) which is null homologous in \(U \) is null homotopic in \(U \).

It can be shown, in the spirit of [13], that the AFG property depends only on the homotopy type of \(X \).

If \(f \) is a proper map between manifolds, we say that \(f \) is an AFG map provided that \(f^{-1}(x) \) has property AFG for each \(x \) in the image of \(f \).

4. Taming irregular sets in high dimensions. If \(P \) is a polyhedron in \(\mathcal{U} \), we say that \(P \) is locally flat if \(P \) has a triangulation in which each simplex is locally flat.

Theorem 2. If \(h \) is a nice homeomorphism with \(P \) a polyhedron, \(n \geq 6 \), and \(k + 3 \leq n \), then \(P \) is locally flat if and only if \(\hat{f}_h \) is an AFG map.

Theorem 2 is proven by using the homotopy properties of \(\hat{f}_h \) to show that \(P \) is locally nice and by applying Bryant and Seebeck [3]. An important step in the proof is the application of L. Siebenmann’s obstruction theory [15] to prove

Theorem 3. If \(\hat{f}_h \) is AFG and \(B \) is the open star of some point in \(P \) in some triangulation of \(P \), then \(\hat{f}_h^{-1}(B) \) is homeomorphic to the interior of a compact manifold provided \(n \geq 6 \).

5. The three-dimensional case. If \(h \) is a nice homeomorphism, we say that \(h \) has a cross-section if there is a closed, locally flat \((n - 1) \)-manifold \(T \subset \mathcal{U} - P \) such that \(f_h^{-1}(x) \cap T \) is a continuum for each \(x \in P \), \(T \) separates \(\mathcal{U} \) into two components with \(P \) in the bounded component, and \(h(T) \cap T = \emptyset \).

Theorem 4. Let \(h \) be a nice homeomorphism with cross-section, \(n = 3 \), and \(k = 1 \). Then \(P \) is locally tame at each point and \(\mathcal{U} \) is homeomorphic to the interior of a cube with \(q \) handles, where \(q = \text{rank } H_1(P) \).

The proof of Theorem 4 is a lengthy argument using standard tools in three-dimensional topology. An important step in the proof involves an appeal to a taming theorem of D. R. McMillan [14].
If \(p \in U \), we say that \(h \) is positively regular at \(p \) if for each \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that \(d(p, q) < \delta \) implies \(d(h^n(p), h^n(q)) < \epsilon \) for all \(n > 0 \).

Proposition 5. If \(h \) satisfies (1) and (2), \(k = 1, P \neq S^1, h|P = \text{identity}, \) and \(h \) is positively regular on \(U \), then \(h \) is a nice homeomorphism.

Theorem 4, then, has an obvious restatement in terms of positive regularity. Examples can be given to show that Theorem 4 cannot be extended to higher dimensions. In fact, the construction of M. Brown [2] using the Andrews-Curtis Theorem [1] can be used to construct, for each \(n \geq 4 \) and \(1 \leq k \leq n - 3 \), a homeomorphism \(h \) which satisfies (1) and (2) with \(U = \mathbb{R}^n \) and \(P \) a wildly embedded \(k \)-cell, such that \(h \) has a cross-section and is positively regular on \(\mathbb{R}^n \).

References

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Current address: (P. F. Duvall, Jr.) Department of Mathematics and Statistics, Oklahoma State University, Stillwater, Oklahoma 74074

Current address: (L. S. Husch) Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916