Classification theorems for $p$-groups and modules over a discrete valuation ring
HTML articles powered by AMS MathViewer
- by R. B. Warfield Jr. PDF
- Bull. Amer. Math. Soc. 78 (1972), 88-92
References
- Peter Crawley and Alfred W. Hales, The structure of abelian $p$-groups given by certain presentations, J. Algebra 12 (1969), 10–23. MR 238947, DOI 10.1016/0021-8693(69)90014-3 2. P. Hill, On the classification of abelian groups (to appear).
- Irving Kaplansky, Infinite abelian groups, Revised edition, University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
- Irving Kaplansky and George W. Mackey, A generalization of Ulm’s theorem, Summa Brasil. Math. 2 (1951), 195–202. MR 49165
- L. Ya. Kulikov, Generalized primary groups. I, Trudy Moskov. Mat. Obšč. 1 (1952), 247–326 (Russian). MR 0049188
- Eben Matlis, Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964), 66. MR 178025
- R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182–212. MR 218452, DOI 10.1007/BF01135839
- R. B. Warfield Jr., A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460–465. MR 242886, DOI 10.1090/S0002-9939-1969-0242886-2
Additional Information
- Journal: Bull. Amer. Math. Soc. 78 (1972), 88-92
- MSC (1970): Primary 13C05, 20K99; Secondary 18G25, 20K40
- DOI: https://doi.org/10.1090/S0002-9904-1972-12870-2
- MathSciNet review: 0291284