On the spectrum of algebraic $K$-theory
HTML articles powered by AMS MathViewer
- by S. M. Gersten PDF
- Bull. Amer. Math. Soc. 78 (1972), 216-219
References
- D. W. Anderson, Chain functors and homology theories, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971) Lecture Notes in Math., Vol. 249, Springer, Berlin, 1971, pp. 1–12. MR 0339132
- Michael Barratt and Stewart Priddy, On the homology of non-connected monoids and their associated groups, Comment. Math. Helv. 47 (1972), 1–14. MR 314940, DOI 10.1007/BF02566785
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- A. K. Bousfield and D. M. Kan, Homotopy with respect to a ring, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 59–64. MR 0326734
- A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79–106. MR 283801, DOI 10.1016/0040-9383(72)90024-9
- S. M. Gersten and D. L. Rector, A relation between two simplicial algebraic $K$-theories, Bull. Amer. Math. Soc. 77 (1971), 397–399. MR 276305, DOI 10.1090/S0002-9904-1971-12712-X 7. M. Karoubi, Fondeurs dérivés et K-théorie, Séminaire sur la K-théorie, Lecture Notes in Math., vol. 136, Springer-Verlag, Berlin, 1970.
- Max Karoubi, La périodicité de Bott en $K$-théorie générale, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1305–A1307 (French). MR 260841
- Max Karoubi, La périodicité de Bott en $K$-théorie générale, Ann. Sci. École Norm. Sup. (4) 4 (1971), 63–95 (French). MR 285585, DOI 10.24033/asens.1206
- Max Karoubi and Orlando Villamayor, Foncteurs $K^{n}$ en algèbre et en topologie, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416–A419 (French). MR 251717
- Max Karoubi, In honor of Orlando E. Villamayor, Bol. Acad. Nac. Cienc. (Córdoba) 65 (2000), 11–12 (Spanish). Colloquium on Homology and Representation Theory (Spanish) (Vaquerías, 1998). MR 1840434 12. D. Quillen, Cohomology of groups (to appear). 13. D. Quillen, The K-theory associated to a finite field. I (to appear). 14. G. Segal, Homotopy everything H-spaces (to appear).
Additional Information
- Journal: Bull. Amer. Math. Soc. 78 (1972), 216-219
- MSC (1970): Primary 18F25, 55B15, 16A54, 13D15, 55F50, 18G30, 55B20, 55D35
- DOI: https://doi.org/10.1090/S0002-9904-1972-12924-0
- MathSciNet review: 0299657