A terminal comparison principle for differential inequalities
HTML articles powered by AMS MathViewer
- by Thomas G. Hallam PDF
- Bull. Amer. Math. Soc. 78 (1972), 230-233
References
- Fred Brauer, Global behavior of solutions of ordinary differential equations, J. Math. Anal. Appl. 2 (1961), 145–158. MR 130423, DOI 10.1016/0022-247X(61)90051-8
- Fred Brauer, Bounds for solutions of ordinary differential equations, Proc. Amer. Math. Soc. 14 (1963), 36–43. MR 142829, DOI 10.1090/S0002-9939-1963-0142829-0 3. T. G. Hallam, Convergence of solutions of nonlinear differential equations, Ann. Mat. Pura Appl. (to appear).
- T. G. Hallam and J. W. Heidel, The asymptotic manifolds of a perturbed linear system of differential equations, Trans. Amer. Math. Soc. 149 (1970), 233–241. MR 257486, DOI 10.1090/S0002-9947-1970-0257486-0
- Thomas G. Hallam and V. Lakshmikantham, Growth estimates for convergent solutions of ordinary differential equations, J. Mathematical and Physical Sci. 5 (1971), 83–88. MR 298127 6. V. Lakshmikantham and S. Leela, Differential and integral inequalities. Theory and applications. Vol. I, Academic Press, New York, 1969.
- Ja. D. Mamedov, One-sided estimates in the conditions for existence and uniqueness of solutions of the limit Cauchy problem in a Banach space, Sibirsk. Mat. Ž. 6 (1965), 1190–1196 (Russian). MR 0190496
- Aurel Wintner, Asymptotic equilibria, Amer. J. Math. 68 (1946), 125–132. MR 14529, DOI 10.2307/2371745
- Aurel Wintner, An Abelian lemma concerning asymptotic equilibria, Amer. J. Math. 68 (1946), 451–454. MR 16812, DOI 10.2307/2371826
- Aurel Wintner, On a theorem of Bôcher in the theory of ordinary linear differential equations, Amer. J. Math. 76 (1954), 183–190. MR 58800, DOI 10.2307/2372408
Additional Information
- Journal: Bull. Amer. Math. Soc. 78 (1972), 230-233
- MSC (1970): Primary 34A40, 34C10
- DOI: https://doi.org/10.1090/S0002-9904-1972-12932-X
- MathSciNet review: 0288396