## A terminal comparison principle for differential inequalities

HTML articles powered by AMS MathViewer

- by Thomas G. Hallam PDF
- Bull. Amer. Math. Soc.
**78**(1972), 230-233

## References

- Fred Brauer,
*Global behavior of solutions of ordinary differential equations*, J. Math. Anal. Appl.**2**(1961), 145–158. MR**130423**, DOI 10.1016/0022-247X(61)90051-8 - Fred Brauer,
*Bounds for solutions of ordinary differential equations*, Proc. Amer. Math. Soc.**14**(1963), 36–43. MR**142829**, DOI 10.1090/S0002-9939-1963-0142829-0
3. T. G. Hallam, Convergence of solutions of nonlinear differential equations, Ann. Mat. Pura Appl. (to appear).
- T. G. Hallam and J. W. Heidel,
*The asymptotic manifolds of a perturbed linear system of differential equations*, Trans. Amer. Math. Soc.**149**(1970), 233–241. MR**257486**, DOI 10.1090/S0002-9947-1970-0257486-0 - Thomas G. Hallam and V. Lakshmikantham,
*Growth estimates for convergent solutions of ordinary differential equations*, J. Mathematical and Physical Sci.**5**(1971), 83–88. MR**298127**
6. V. Lakshmikantham and S. Leela, Differential and integral inequalities. Theory and applications. Vol. I, Academic Press, New York, 1969.
- Ja. D. Mamedov,
*One-sided estimates in the conditions for existence and uniqueness of solutions of the limit Cauchy problem in a Banach space*, Sibirsk. Mat. Ž.**6**(1965), 1190–1196 (Russian). MR**0190496** - Aurel Wintner,
*Asymptotic equilibria*, Amer. J. Math.**68**(1946), 125–132. MR**14529**, DOI 10.2307/2371745 - Aurel Wintner,
*An Abelian lemma concerning asymptotic equilibria*, Amer. J. Math.**68**(1946), 451–454. MR**16812**, DOI 10.2307/2371826 - Aurel Wintner,
*On a theorem of Bôcher in the theory of ordinary linear differential equations*, Amer. J. Math.**76**(1954), 183–190. MR**58800**, DOI 10.2307/2372408

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**78**(1972), 230-233 - MSC (1970): Primary 34A40, 34C10
- DOI: https://doi.org/10.1090/S0002-9904-1972-12932-X
- MathSciNet review: 0288396