Invariant splittings in nonassociative algebras: A Hopf approach
Author:
H. P. Allen
Journal:
Bull. Amer. Math. Soc. 78 (1972), 245-246
MSC (1970):
Primary 13D99, 17A99
DOI:
https://doi.org/10.1090/S0002-9904-1972-12940-9
MathSciNet review:
0292900
Full-text PDF Free Access
References | Similar Articles | Additional Information
- G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200–221. MR 92928, DOI https://doi.org/10.2307/2372490
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- Moss Eisenberg Sweedler, Integrals for Hopf algebras, Ann. of Math. (2) 89 (1969), 323–335. MR 242840, DOI https://doi.org/10.2307/1970672
- E. J. Taft, Invariant Wedderburn factors, Illinois J. Math. 1 (1957), 565–573. MR 98124
- Earl J. Taft, Invariant Levi factors, Michigan Math. J. 9 (1962), 65–68. MR 132126
- E. J. Taft, Uniqueness of invariant Wedderburn factors, Illinois J. Math. 6 (1962), 353–356. MR 140539
- Earl J. Taft, Invariant splitting in Jordan and alternative algebras, Pacific J. Math. 15 (1965), 1421–1427. MR 190202
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 13D99, 17A99
Retrieve articles in all journals with MSC (1970): 13D99, 17A99