Surfaces in constant curvature manifolds with parallel mean curvature vector field
HTML articles powered by AMS MathViewer
- by David A. Hoffman PDF
- Bull. Amer. Math. Soc. 78 (1972), 247-250
References
-
1. a) B.-Y. Chen, Minimal surfaces in $S^ m$ with Gauss curvature $łeq 0$, Proc. Amer. Math. Soc. (to appear).
- Bang-yen Chen, Submanifolds in a euclidean hypersphere, Proc. Amer. Math. Soc. 27 (1971), 627–628. MR 270309, DOI 10.1090/S0002-9939-1971-0270309-5 2. H. Hopf, Lectures on differential geometry in the large, Stanford University, Stanford, Calif., 1956 (mimeographed notes).
- Takehiro Itoh, Complete surfaces in $E^{4}$ with constant mean curvature, K\B{o}dai Math. Sem. Rep. 22 (1970), 150–158. MR 267496
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- Tilla Klotz and Robert Osserman, Complete surfaces in $E^{3}$ with constant mean curvature, Comment. Math. Helv. 41 (1966/67), 313–318. MR 211332, DOI 10.1007/BF02566886
- H. Blaine Lawson Jr., Complete minimal surfaces in $S^{3}$, Ann. of Math. (2) 92 (1970), 335–374. MR 270280, DOI 10.2307/1970625
- Tominosuke Ôtsuki, A theory of Riemannian submanifolds, K\B{o}dai Math. Sem. Rep. 20 (1968), 282–295. MR 234390
- Ernst A. Ruh, Minimal immersions of $2$-spheres in $S^{4}$, Proc. Amer. Math. Soc. 28 (1971), 219–222. MR 271880, DOI 10.1090/S0002-9939-1971-0271880-X
- R. H. Szczarba, On existence and rigidity of isometric immersions, Bull. Amer. Math. Soc. 75 (1969), 783–787; addendum, ibid. 76 (1969), 425. MR 0250232, DOI 10.1090/S0002-9904-1970-12497-1
Additional Information
- Journal: Bull. Amer. Math. Soc. 78 (1972), 247-250
- MSC (1970): Primary 53C40, 53A05, 53C45, 53B20; Secondary 53A10, 30A52
- DOI: https://doi.org/10.1090/S0002-9904-1972-12942-2
- MathSciNet review: 0298601