Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Fourier inversion for semisimple Lie groups of real rank one
HTML articles powered by AMS MathViewer

by P. J. Sally Jr. and Garth Warner PDF
Bull. Amer. Math. Soc. 78 (1972), 251-254
References
  • Stephen S. Gelbart, Fourier analysis on matrix space, Memoirs of the American Mathematical Society, No. 108, American Mathematical Society, Providence, R.I., 1971. MR 0492066
  • I. M. Gel′fand, M. I. Graev, and I. I. Pjateckiĭ-Šapiro, Teoriya predstavleniĭ i avtomorfnye funktsii, Generalized functions, No. 6, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0220673
  • Harish-Chandra, A formula for semisimple Lie groups, Amer. J. Math. 79 (1957), 733–760. MR 96138, DOI 10.2307/2372432
  • Harish-Chandra, Harmonic analysis on semisimple Lie groups, Some Recent Advances in the Basic Sciences, Vol. 1 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1962-1964) Yeshiva Univ., Belfer Graduate School of Science, New York, 1966, pp. 35–40. MR 0210832
  • Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023
  • Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023
  • Harish-Chandra, Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241–318. MR 219665, DOI 10.1007/BF02391779
  • Harish-Chandra, Two theorems on semi-simple Lie groups, Ann. of Math. (2) 83 (1966), 74–128. MR 194556, DOI 10.2307/1970472
  • Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. MR 219666, DOI 10.1007/BF02392813
  • 4. P. J. Sally, Jr. and J. A. Shalika, The Fourier transform on SL(2) over a non-archimedean local field (to appear).
  • Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 22E30, 22D10, 43A30
  • Retrieve articles in all journals with MSC (1970): 22E30, 22D10, 43A30
Additional Information
  • Journal: Bull. Amer. Math. Soc. 78 (1972), 251-254
  • MSC (1970): Primary 22E30; Secondary 22D10, 43A30
  • DOI: https://doi.org/10.1090/S0002-9904-1972-12944-6
  • MathSciNet review: 0299733