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1. Introduction. For a compact metric space X, let 2X be the space of all 
nonempty closed subsets of X whose topology is induced by the Hausdorff 
metric. One of the well-known unsolved problems in set-theoretic topology 
has been to identify the space 21 (for I = [0,1]) in terms of a more man
ageable definition. Professor Kuratowski has informed us that the con
jecture that 21 is homeomorphic to the Hilbert cube Q was well known to 
the Polish topologists in the 1920's. In 1938 in [7] Wojdyslawski specifically 
asked if 2* « Q and, more generally, he asked if 2X « Q where X is any 
nondegenerate Peano space. In this paper we outline our rather lengthy 
proof that 21 « Q, announce some generalizations to some other 1-
dimensional X9 and give some of the technical details. 

2. Preliminaries. If X is a compact metric space, then the Hausdorff 
metric D on 2X can be defined as 

D(A, B) = inf{e :A c U(B, e) and B a U(A9 e)} 

where, for C c X, U(C9 s) is the e-neighborhood of C in X. 
An inverse sequence (Xn, ƒ„) will have, for n ^ l , bonding maps fn:Xn + l 

-• X„ and the inverse limit space will be denoted by lim(ZM, ƒ„). 
The theory of near-homeomorphisms is very important in this work 

(see §5). IÎX and Fare homeomorphic metric spaces, then a map ƒ : X -• Y 
is a near-homeomorphism if for each e > 0 there is a homeomorphism h 
from X onto Y such that d(h9 ƒ ) < e. 

THEOREM 2.1 (Morton Brown [1, Theorem 4, p. 482]). Let S = lim^,,, fn) 
where the X„ are all homeomorphic to a compact metric space X and each fn 

is a near-homeomorphism. Then S is homeomorphic to X. 

The following corollary was not specifically mentioned in [1] but it is an 
easy corollary of the proof of 2.1. 

COROLLARY 2.2. Furthermore, each projection map pn:S -• Xn is a near-
homeomorphism. 
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A map ƒ : X -» Y stabilizes to a near-homeomorphism if ƒ x id : X x Q 
-* y x g is a near-homeomorphism. A spaced is a Q-factor if X x g « Q . 
This is equivalent to saying that there exists a space Y such that X x Y & Q 
since if the latter is true then Q « (X x YY° « AT x (X x 7)00 « X x Q. 

3. Outline of proof. If A is a subset of I = [0,1], let 2^ be the subspace 
of all elements of 2' that contain A and let 01 = {0,1}. 

LEMMA 3.1. 21 is a Hubert cube if 2QI is a Hubert cube. 

PROOF. It is proved in [3] that 2' « CC2'01 where CX means the cone 
over X. (The formula {A, s, t) -» {(1 - t)(l - s)a + t:aeA} defines a map 
from 2oi x I x ƒ to 21 producing the same identifications as the coning 
operations.) O. H. Keller proved in [2] that any infinite-dimensional, com
pact, convex subspace of Hubert space is homeomorphic to the Hubert 
cube. Since CQ has a convenient geometric realization as a convex subset 
of Hubert space, we have CQ « g, and thus CCQ « Q and the result 
follows. 

We now represent 2'0l by two inverse limits, using the first to analyze the 
second. For each n, let FM:2QI -• 2!

0l be the map sending each A to its 
closed 1/n-neighborhood in I and let Bn = Fw(2oi). Define fn :Bn + j -> B„ by 
h — *n(n+l)lA!+l-

LEMMA 3.2. 2'01 « lim(Bn, ƒ„). 

PROOF. Since l/n = l/(n + 1) + \/n(n + 1), we have fnFn+, = F„ and 
thus we can define the map F :2QI -> lim(BM,/w)byF(/l) = (F1(y4),F2(A),-), 
and this is a homeomorphism since the map (Au A2, •••)-• P)*= ! /tw is 
the inverse of F. 

THEOREM 3.3. 2QI is a Q-f actor. 

OUTLINE OF PROOF. We show that each Bn is a Q-factor and then estab
lish that each fn stabilizes to a near-homeomorphism and hence 2QI x Q 
% lim(B„ x g, ƒ„ x id) « g by Theorem 2.1. 

For our second inverse system we define the spaces as follows. Let 
<r(n) = {0,1, l/n, l/n + 1, • • •} and let Yn = 2[(n). 

COROLLARY 3.4. Y„ « Q. 

PROOF. Let J(n, 1), J(n, 2), • • • denote the subintervals of ƒ determined by 
a(ri) and enumerated from right to left and let K(n, m) be the set of end-
points of J(n,rn). The function cp: Yn -+ Y\m=i 2ig:S{ 8 i v e n by VM) = 
(/I n J(n, 1), 4 n J(n, 2), • • •) is a homeomorphism. Since each 2$J;U)

) « 2QI 
and since by [4] any countable infinite product of nondegenerate Q-factors 
is homeomorphic to Q, we are done. 

We define the bonding maps rn:Yn+1 -> Yn as follows. For each AeYn+l 

let ôn(A) be the distance from l/n to the nearest point of A. We define rn{A) 
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to be the union of A with the two closed intervals of length ôn(A) extending 
towards 1/n from the points of A nearest to 1/n on either side. 

LEMMA 3.5. 2*01 « lim(Yw, rn). 

PROOF. The following observation is useful. If A e Ym (m > n ^ 1), then 
C = rn ° * * * ° rm-1: Xn ~~* X a c t s independently on the closures U = [u, v] 
of the components of I\A9 with 

C(A)nÜ = [u,u + tttulv - Zn
v,v] 

where ÇI is the maximum distance from points of c(n) to the complement 
of U. Define Rn: 2

!
01 -> Yn by setting Kw(^) to be the union of A and 

(J{[M,M H- £u] u [t; — ^ , v]:U = (M,i;) is a component of I\A}. 

It easily follows that Rn = rnoRn+l by observing what happens, for 
A G 2oi, on the component of J\A that contains 1/n, if it exists. Thus we can 
define R : 2 ^ - > lim(yM,rw) by R(A) = (Z?^^), Jf?2(^)»- • ) and this is a 
homeomorphism since the map (/4l5 A2, •••)-» 0^°= i ^« *s t" ie i n v e r s e of-1?. 

THEOREM 3.6. 21 is a Hubert cube. 

OUTLINE OF PROOF. By 2.1, 3.1, 3.4, and 3.5 it is sufficient to prove that 
each rn is a near-homeomorphism. We proceed as follows. In the repre
sentation of Yn as an infinite product of copies of 2QU the map rn becomes 
the stabilization of a map p„ from 2 $ J};}{to 2j$;})

) x 2$;2{ « 2 $ : };!;„,,. 
By normalizing the length of J(n + 1,1), we regard pn as a map from 2oi to 
2 i ^ t l for some *„e(0,1). Define /iw:Bm -» Cm = Fw((2/

0,rrt>1)) by fcJfmM)) 
= Fm(pn(/4)) for >1 € 2oi- Then hm is well-defined (this can be seen by letting 
om :Bm -• 2QI be the natural [discontinuous] section of Fm and observing 
that /im = Fmpnam) and continuous, fcm/w = (/m|Cm+1)fcw+1, and hence 
pn = \im(hm). 

— <- Bm <- Bm + l +- - - - 201 

... <_ r i ï r *_ . . . y 
* * ' <— ^ m * ^ ^ m + 1 <— * • * ^O.fr.,1 

(In fact each Bm and Cw is a compact polyhedron and hm is a deformation 
retraction.) We show that each hm stabilizes to a near-homeomorphism and 
since each fm does we know by Theorem 5.2 of this paper that p„ stabilizes 
to a near-homeomorphism and hence that rn is a near-homeomorphism. 

4. Extension to connected graphs and dendrons. Using the facts that (1) 
the collapse-to-base of the mapping cylinder of a map between two Q-factors 
stabilizes to a near-homeomorphism [5] and (2) the compactification of a 
Hilbert cube manifold into a Q-factor by the addition of a Q-factor with 
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property Z in the compactification yields a Hubert cube [6], one may derive 
the next result from Theorem 3.6. 

THEOREM 4.1. If X is a nondegenerate, connected graph or dendron, then 
2X is a Hilbert cube. 

5. Near-homeomorphisms and inverse limits. The material in this section 
is referred to in the proof of Theorem 3.6. 

LEMMA 5.1. Let X, Y, and Z be compact metric spaces. Iff:X -• Y and 
h:Y -> Z are maps where f and g = hof are near-homeomorphisms, then h 
is a near-homeomorphism. 

PROOF. Let e > 0 and pick Ô > 0 such that if y, y' e Y and d(y, y') < <5, 
then d(h(y\ h(y')) < e/2. Select homeomorphisms fx :X -> y and gx:X -• Z 
with d(fuf)<6 and d(gi9g)<e/2. Then d(fxfl\ffl

l) < à so 
<Wiƒr \ hff~x ') = d(K gfïl) < e/2. Since d(gfl \ g l ƒ r*) < e/2, we have 
d(h9 gifî l) < e and since gjƒx * is a homeomorphism, then ft is a near-
homeomorphism. 

THEOREM 5.2. Let S = lim(Xw, ƒ„) and T = lim( Y„, g„) w/iere a// t/te spaces 
are compact and for each n, let hn:Xn-+ Yn be a map such that gn/iw+i 
= hnfn. If for each n, both fn and hn are (stabilize to) near-homeomorphisms, 
then h = lim(hn):S -+ T is a (stable) near-homeomorphism. 

PROOF. The stable version of the theorem follows directly from the other 
by stabilizing the whole system of spaces and maps and noting that in 
general, lim(X„, ƒ„) x Q « lim(X„ x Q, fn x id). Otherwise, let e > 0 and 
let n ^ 1 be large enough so that the projection map pn : T -• Yn is an e-map. 
By 5.1, each gt is a near-homeomorphism, so by 2.2 all projection maps 
p'i'.S -+ X( and pt:T^> Yt are near-homeomorphisms. Since the compo
sition of two near-homeomorphisms is a near-homeomorphism, then 
ƒ = KPn-S -• Yn is a near-homeomorphism. Since g = pn.T-+ Yn is an 
e-map, there exists à > 0 such that if t, t' e T where d(g(t), g(t')) < <5, then 
d(t91) < e. Let a : S -• Yn and /? : T -» y be homeomorphisms within Ô/2 of 
ƒ and g, respectively. Thus d( ƒ, a) < 5/2 and d(a, g/T *a) = d(pP' 1<x, g/T *a) 
< ô/2 and hence d(fgp~i<x) = d(gh,gP~1<x)<ô which implies that 
d(/i, P"1^) < e. This finishes the proof since j?"1** is a homeomorphism. 
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