Generalized product theorems for torsion invariants with applications to flat bundles
HTML articles powered by AMS MathViewer
- by Douglas R. Anderson PDF
- Bull. Amer. Math. Soc. 78 (1972), 465-469
References
- Douglas R. Anderson, The Whitehead torsion of the total space of a fiber bundle, Topology 11 (1972), 179–194. MR 295348, DOI 10.1016/0040-9383(72)90005-5 2. D. R. Anderson, Wall’s finiteness obstruction for the total space of a flat bundle (submitted).
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- F. T. Farrell and W.-C. Hsiang, A formula for $K_{1}R_{\alpha }\,[T]$, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 192–218. MR 0260836
- Stephen M. Gersten, A product formula for Wall’s obstruction, Amer. J. Math. 88 (1966), 337–346. MR 198465, DOI 10.2307/2373197
- Kyung Whan Kwun and R. H. Szczarba, Product and sum theorems for Whitehead torsion, Ann. of Math. (2) 82 (1965), 183–190. MR 182972, DOI 10.2307/1970568 7. L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Thesis, Princeton University, Princeton, N.J., 1965.
Additional Information
- Journal: Bull. Amer. Math. Soc. 78 (1972), 465-469
- MSC (1970): Primary 57C10; Secondary 18F25
- DOI: https://doi.org/10.1090/S0002-9904-1972-12947-1
- MathSciNet review: 0293636