ABSTRACT. Let \(E \) be a set of positive measure on the unit circle. Let \(f \in H^p (1 \leq p \leq \infty) \) and \(g \) be the restriction of \(f \) to \(E \). It is shown that functions \(g_\lambda, \lambda > 0 \), can be constructed from \(g \) so that \(g_\lambda \to f \). We also characterize those functions \(g \) on \(E \) which are restrictions of functions in \(H^p (1 < p \leq \infty) \).

In the following, the space \(H^p (1 \leq p \leq \infty) \) will, according to the context, be either the Hardy class of analytic functions in the open unit disc \(D \) or the space of the corresponding boundary value functions, viz the subspace of “analytic” functions in \(L^p(C) \), \(C \) being the unit circle. If \(E \subset C \) has positive measure then it is well known (see [3]) that a function in \(H^p \) cannot vanish on \(E \) without being identically zero. Thus, theoretically at least, \(f \in H^p \) is uniquely “determined” by its values on \(E \). In the present work we address ourselves to the problem of recovering functions in \(H^p \) from their restrictions to \(E \). Theorem I gives an explicit constructive solution to this problem. The allied problem of characterizing the restrictions to \(E \) of functions in \(H^p (1 < p \leq \infty) \) is solved in Theorem II. To the best of our knowledge, the only known results relating to these problems are due to the author [4] where the case \(p = 2 \) is dealt with.

Theorem I. Let \(E \subset C \) with \(m(E) > 0 \). Suppose that \(1 \leq p \leq \infty \), \(f \in H^p \) and that \(g \) is the restriction of \(f \) to \(E \). For each \(\lambda > 0 \) define analytic functions \(h_\lambda, g_\lambda \) on \(D \) by

\[
\begin{align*}
h_\lambda(z) &= \exp\left\{- \frac{1}{4\pi} \log(1 + \lambda) \int_E e^{i\theta} + z \overline{e^{i\theta} - z} \, d\theta \right\}, \quad z \in D, \\
g_\lambda(z) &= \lambda h_\lambda(z) \frac{1}{2\pi i} \int_E \frac{\overline{h_\lambda(w)}g(w) \, dw}{w - z}, \quad z \in D.
\end{align*}
\]

Then as \(\lambda \to \infty \), \(g_\lambda \to f \) uniformly on compact subsets of \(D \). Moreover for \(1 < p < \infty \) we also have \(\|g_\lambda - f\|_p \to 0 \) as \(\lambda \to \infty \).

Theorem II. Let \(E \subset C \) with \(0 < m(E) < m(C) \). For \(g \in L^1(E) \) let \(g_\lambda \) be as in Theorem I. (a) If \(1 < p < \infty \) then a function \(g \in L^p(E) \) is the restriction to \(E \) of some \(f \in H^p \) if and only if \(\sup_{\lambda > 0} \|g_\lambda\|_p < \infty \). (b) A function \(g \in L^\infty(E) \) is the restriction to \(E \) of some \(f \in H^\infty \) if and only if \(\sup_{p > 1} \lim \sup_{\lambda \to \infty} \|g_\lambda\|_p < \infty \).
The proof of Theorem I will be based on a series of lemmas. First we recall some elementary properties of Toeplitz operators on H^p spaces (for details in the special case $p = 2$ see [1], and for the general case $1 < p < \infty$ see [5]). Let $1 < p < \infty$. For each $\phi \in L^\infty$, the Toeplitz operator T_ϕ is defined by $T_\phi f = P(\phi f)$, $f \in H^p$, where P is the natural projection of L^p onto H^p. We need the following facts: (i) $\|T_\phi\| \leq C_{\phi}\|\phi\|_\infty$, (ii) if $\phi, \psi \in L^\infty$ and if either $\phi \in H^\infty$ or $\psi \in H^\infty$, then $T_\phi f = T_\psi f$. This latter fact immediately yields

Lemma 1. If $h, 1/h \in H^\infty$ and $\varphi = |h|^{-2}$, then the Toeplitz operator T_φ is invertible and $T_\varphi^{-1} = T_h$. \[\text{Proof.} \quad T_h T_\varphi T_h = T_h (T_h T_{1/h}) T_{1/h} = T_h T_{1/h} = I, \text{ etc.} \]

Let χ_E be the characteristic function of the set E and let for $\lambda > 0$, $\varphi_\lambda = 1 + \lambda \chi_E$. Then the function h_λ defined in Theorem I satisfies, $1/\varphi_\lambda = h_\lambda h_{1/\lambda}$. Also $h_\lambda, 1/h_\lambda \in H^\infty$. Thus by Lemma 1, we have

Lemma 2. T_{φ_λ} is invertible and $T_{\varphi_\lambda}^{-1} = T_{h_\lambda} T_{h_{1/\lambda}}$.

Lemma 3. Define for each $a \in D$, $e_a(z) = 1/(1 - az), z \in D$. Then $e_a \in H^p$, $1 \leq p \leq \infty$, and if T_{e_a} is treated as an operator on H^p ($1 < p < \infty$), we have $T_{e_a}^{-1} e_a = h_\lambda(a) h_{1/\lambda} e_a$. \[\text{Proof.} \quad \text{For each } g \in H^q \quad (q = p/(p - 1)), \quad \text{we have} \quad (T_{h_\lambda} e_a, g) = (e_a, h_\lambda g) = h_\lambda(a) (h_\lambda(a) e_a, g). \]

Thus $T_{h_\lambda} e_a = h_\lambda(a) e_a$. An appeal to Lemma 2 finishes the proof.

Lemma 4. Let K be a compact subset of D and $1 \leq p \leq \infty$. Then as $\lambda \to \infty$, $\|h_\lambda(a) h_{1/\lambda} e_a\|_p \to 0$ uniformly for $a \in K$. \[\text{Proof.} \quad \text{We note that} \quad \|h_{1/\lambda}\|_\infty \leq 1 \quad \text{and} \quad \|h_\lambda(a)\| \leq (1 + \lambda)^{-\alpha} \text{ where } \alpha > 0 \quad \text{and} \quad \alpha \text{ depends on } |a|. \]

Let now S be the Toeplitz operator on H^p ($1 < p < \infty$) corresponding to the characteristic function χ_E of E. Then since $I + \lambda S = T_{\varphi}$, $(I + \lambda S)^{-1}$ exists by Lemma 2. Also by Lemma 4, $\|(I + \lambda S)^{-1} e_a\|_p \to 0$ as $\lambda \to \infty$. By Lemma 2 and fact (i) about Toeplitz operators we also have

$$\|(I + \lambda S)^{-1}\| = \|T_{h_{1/\lambda}}\| \leq \|h_{1/\lambda}\|^2 C_p \leq C_p.$$

Noting that $\{e_a : a \in D\}$ is a fundamental set in H^p, we therefore obtain (cf., e.g., [3, p. 55]) that $\|(I + \lambda S)^{-1} f\|_p \to 0$ for every $f \in H^p$. Noting that for $f \in H^p$, $(I + \lambda S)^{-1} f = f - \lambda (I + \lambda S)^{-1} Sf$, we get

Lemma 5. If $1 < p < \infty$ and $f \in H^p$, then as $\lambda \to \infty$, $\|\lambda (I + \lambda S)^{-1} Sf - f\|_p \to 0$. \[\text{Proof.} \quad \text{Let} \quad \lambda (I + \lambda S)^{-1} Sf - f \quad \text{be the error.} \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The proof of Theorem I (for $1 < p < \infty$) will be complete if we show that $g_\lambda = \lambda(I + \lambda S)^{-1}Sf$. This is routine: For $z \in D$,

$$(\lambda(I + \lambda S)^{-1}Sf, e_z) = \lambda(Sf, (I + \lambda S)^{-1}e_z) = \lambda(\chi_E, f, (I + \lambda S)^{-1}e_z) = \lambda(f, e_z) = \lambda(f, h_\lambda(z)h_\lambda e_z)_E.$$

In the above chain of equalities, the first is a consequence of the fact that $(I + \lambda S)^*$ is the operator $(I + \lambda S)$ on $H^q (q = p/(p - 1))$ and the last results from Lemma 3. The notation $(\, ,)_E$ denotes the “inner product” over the set E. Now it can be readily checked that $\lambda(f, h_\lambda(z)h_\lambda e_z)_E$ is the same as the defining expression for $g_\lambda(z)$.

The case $p = \infty$ is easy. If $f \in H^\infty$ then since f is also in H^2, by the preceding, $\|g_\lambda - f\|_2 \to 0$ and hence $g_\lambda \to f$ uniformly on compact subsets of D.

Turning to the case $p = 1$, let $f \in H^1$. For $0 < r < 1$, define f_r by $f_r(e^{i\theta}) = f(re^{i\theta})$. Then as is well known, $\|f_r\|_1 \leq \|f\|_1$ and $\|f_r - f\|_1 \to 0$ as $r \to 1$. Let us define, for each $\lambda > 0$, $f_{r,\lambda}$ by

$$f_{r,\lambda}(z) = \frac{1}{2\pi i} \int_E \frac{h_\lambda(w)f_r(w)}{w - z} dw, \quad z \in D.$$

Then we see that, for every compact set $K \subset D$, the following statements hold uniformly in K: (1) $f_{r,\lambda} \to g_\lambda$ as $r \to 1$, (2) $f_r \to f$ as $r \to 1$, (3) $f_{r,\lambda} \to f_r$ as $\lambda \to \infty$. The less trivial of these statements, viz. (3), follows because $f_r \in H^2$ and the case $p = 2$ of the theorem applies. If we show further that the convergence in (3) is also uniform for r in $(0, 1)$ then we can conclude that $g_\lambda \to f$ as $\lambda \to \infty$ uniformly in K and the proof of the theorem for $p = 1$ will be complete. For this purpose, remembering that $f \in H^2$ we have for each $z \in K$,

$$f_{r,\lambda}(z) - f_r(z) = (\lambda(I + \lambda S)^{-1}Sf_r - f_r, e_z) = (I + \lambda S)^{-1}f_r, e_z) = (f_r, (I + \lambda S)^{-1}e_z) = (f_r, h_\lambda(z)h_\lambda e_z).$$

Hence we obtain

$$|f_{r,\lambda}(z) - f_r(z)| \leq \|f_r\|_1 \|h_\lambda(z)h_\lambda e_z\|_\infty \leq \|f\|_1 \|h_\lambda(z)h_\lambda e_z\|_\infty.$$

The last term is independent of r and Lemma 4 ($p = \infty$) does the job.

PROOF OF THEOREM II. The “only if” parts are evident from Theorem I.

As for the “if” part in (a), the boundedness of $\{\|g_\lambda\|_p\}$ together with the weak* compactness of closed balls in H^p provide us with a sequence $\lambda_n \to \infty$ such that g_{λ_n} converges weak* to some f in H^p. Let $g_1 \in L^p(C)$ be defined by setting $g_1 = g$ on E and $g_1 = 0$ otherwise. Denote Pg_1 by \tilde{g}. From the discussion following Lemma 5, it can be seen that

$$g_\lambda = \lambda(I + \lambda S)^{-1}\tilde{g}.$$
Thus for every $k \in H^q$ ($q = p/(p - 1)$), $(\lambda_n(I + \lambda_n S)^{-1}S\hat{g}, k) = (g_{\lambda_n}, Sk) \rightarrow (Sf, k) = (Sf, k)$, while by Lemma 5, the first of these inner products converges to (\hat{g}, k). Hence $\hat{g} = Sf$. This means that the Fourier coefficients $((f - g_i)\chi_E)(n)$ are zero for $n \geq 0$. In other words, $((f - g_i)\chi_E) \in H^p$.

Since $m(C \Delta E) > 0$, we must have $f = g_{\chi_E}$. For proving the "if" part in (b) we need to make just two observations. First, $g \in L^\infty(E)$ implies $g_{\lambda} \in H^p$ for each $p < \infty$ and hence part (a) gives f belonging to H^p for all $p < \infty$ and such that g is the restriction to E of f. Secondly, $\|g_{\lambda}\|_p \rightarrow \|f\|_p$ as $\lambda \rightarrow \infty$ and $\|f\|_p \rightarrow \|f\|_\infty$ as $p \rightarrow \infty$. The details are left to the reader.

Remarks. 1. In the proof of Theorem I, we did not use the F. & M. Riesz Theorem. We thus obtain a new proof of the statement: if $f \in H^p$ ($1 \leq p \leq \infty$), $f = 0$ on E, $m(E) > 0$, then $f = 0$.

2. Theorem I points out a way which enables us to draw conclusions about the properties of a holomorphic function from the knowledge of its values on an arc. It is possible to obtain results parallel to the classical Cauchy theory where we now have integrals over a curve which may not be closed. Details of these and other related results will be published elsewhere.

References

