THE SPECTRUM OF AN AUTOMORPHISM

BY STEPHEN SCHEINBERG

Communicated by Felix Browder, December 29, 1971

In a series of articles H. Kamowitz and I investigated the nature of $\sigma(T)$, the spectrum of an arbitrary automorphism of an arbitrary semisimple commutative Banach algebra. This study was begun as a by-product of \[1\], in which we made the incidental observation that $\sigma(T)$ must meet \(\{z:|z-1| \geq 1\}\), unless $T = I$. The following is a summary of the known necessary conditions (N) and the known sufficient conditions (S) on $\sigma(T)$.

N1. If $T^k = I$ (some $k \geq 1$), then $\sigma(T)$ is a union of subgroups of the group of kth roots of 1, \[2\].

S1. Every possibility consistent with N1 can occur (direct sums of rotations).

N2. If $T^k \neq I$ (all $k \geq 1$), then $\sigma(T)$ is the unit circle, \[2\].

S2. It is common that $\sigma(T)$ is the unit circle, but $\sigma(T)$ can be an annulus, \[2\].

N3. If $T^k \neq I$ (all $k \geq 1$), then $\sigma(T)$ must be connected, \[3\].

S3. The set of $\sigma(T)$’s is closed under the mapping $1/z$, and if $U = \bigcup \sigma(T_k)$ is bounded away from 0 and ∞, then \overline{U} is $\sigma(T)$ for some T. If R is a bounded region such that $\{1 < |z| < a\} \subseteq R \subseteq \{1 < |z|\}$ and $\{1 < |z|\} - R$ is a semigroup under multiplication, then \overline{R} is $\sigma(T)$ for some T. The hypothesis that R be connected may be weakened somewhat, \[3\].

The purpose of this note is to extend the set of constructions of \[3\] to include cases where $\sigma(T)$ is not the closure of its interior. The following theorem illustrates the technique of attaching a line segment to a region.

THEOREM. Let $\sigma = \{z:1 \leq |z| \leq 2\} \cup \{z:2 \leq z \leq 3\}$. Then there is a semisimple Banach algebra A and an automorphism T of A such that $\sigma(T) = \sigma$.

PROOF. In the outline which follows I have omitted several routine calculations. Let A be the set of all functions which are bounded and analytic on $\{1 < |z| < 2\}$ and C^∞ on $\{1.5 \leq z \leq 3\}$ and satisfy $|f^{(n)}(z)| \leq B \max(1,n!(\log n)^n)$ for some $B < \infty$, all $n \geq 0$, and $1.5 \leq z \leq 3$. Define $p(f) = \sup\{|f(z)|:1 < |z| < 2\} + \inf B$. It is clear that p is a norm for A and that A is complete with respect to p.

\[1\] Supported in part by NSF Grant GP-25084.

AMS 1969 subject classifications. Primary 4655, 4650, 4630.

Key words and phrases. Semisimple commutative Banach algebra, algebra automorphism, spectrum, Hadamard product, quasi-analytic class.
Define \(f \ast g = \sum_{a_n b_n z^n} \), where \(f = \sum a_n z^n \) and \(g = \sum b_n z^n \). When \(f \) and \(g \) belong to \(A \), \(f \ast g \) is analytic on \(1 < |z| < 4 \) and

\[
 f \ast g(z) = \frac{1}{2\pi i} \int_{|w| = 1} f(w) g\left(\frac{z}{w} \right) \frac{dw}{w} \quad \text{for } 1 < |z| < 2.
\]

It follows that \(f \ast g \in A \) and \(p(f \ast g) \leq \text{const } p(f) \cdot p(g) \). Then \(\|f\| = \text{const } p(f) \) defines a Banach algebra norm on \(A \).

The mapping \(f \to a_n \) is a homomorphism of \(A \) onto \(C \) for each \(n \). If \(a_n = 0 \) for all \(n \), then \(f \equiv 0 \); this is obvious for \(1 < |z| < 2 \); for \(1.5 \leq z \leq 3 \) it is a consequence of Carleman’s theorem on quasi-analytic classes [4, Chapter 1], since the \(n \)-th root of \(n! (\log n)^n \) is asymptotic to \((n/e \log n) \).

Thus, \(A \) is semisimple.

Because of the rapid growth of \(n! (\log n)^n \), every function which is analytic on a neighborhood of \(\sigma \) belongs to \(A \). Furthermore, if \(g \) is such a function and \(f \) is arbitrary in \(A \), then \(g f \in A \) and \(\|g f\| \leq \text{const } \|f\| \).

Define \(T : A \to A \) by \(T f(z) = z f(z) \). \(T \) is an automorphism of \(A \) and \(\sigma(T) \supseteq \sigma \). If \(\lambda \notin \sigma \), use \(g = 1/(z - \lambda) \) in the preceding paragraph and we see that \(\sigma(T) = \sigma \).

Remark. The construction given above can be extended. As an illustration let us attach a new line segment to the old one. For example, let \(\sigma' = \sigma \cup \{ z : z = 3 + iy, 0 \leq y \leq 1 \} \). Define \(A' \) to be all functions which are bounded and analytic on \(\{ 1 < |z| < 2 \} \), \(C^\infty \) on each interval \(\{ 1.5 \leq z \leq 3 \} \) and \(\{ 3 + iy : 0 \leq y \leq 1 \} \) with \(|f^{(0)}| \leq B \max(1, n! (\log n)^n) \) on both intervals, and satisfying the Cauchy-Riemann condition \((\partial / \partial x)^n f = (i^{-1} \partial / \partial y)^n f \) at \(z = 3 \). The rest of the proof continues now with very slight changes. (Observe that the Cauchy-Riemann condition guarantees that any function analytic on a neighborhood of \(\sigma' \) will belong to \(A' \) and that any member of \(A' \) which is 0 on \(\sigma \) will be 0 on \(\sigma' \).)

With the method of the theorem, disjoint domains can be connected by line segments, subject to the semigroup requirement of S3, and these constructions may be combined with those of [3] and iterated to produce quite complicated \(\sigma(T) \).

Acknowledgement. I thank Y. Katznelson for suggesting that I try the notion of quasi-analyticity to obtain an annulus with an attached line segment.

References

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305

Current address: Department of Mathematics, University of California, Irvine, California 92664