A spectral mapping theorem for tensor products of unbounded operators
HTML articles powered by AMS MathViewer
- by Michael C. Reed and Barry Simon PDF
- Bull. Amer. Math. Soc. 78 (1972), 730-733
References
- Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, No. 26, Princeton University Press, Princeton, N. J., 1950. MR 0036935
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Michael Reed and Barry Simon, Tensor products of closed operators on Banach spaces, J. Functional Analysis 13 (1973), 107–124. MR 0348538, DOI 10.1016/0022-1236(73)90038-4
- Arlen Brown and Carl Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162–166. MR 188786, DOI 10.1090/S0002-9939-1966-0188786-5
- Martin Schechter, On the spectra of operators on tensor products, J. Functional Analysis 4 (1969), 95–99. MR 0257782, DOI 10.1016/0022-1236(69)90024-x
- Takashi Ichinose, On the spectra of tensor products of linear operators in Banach spaces, J. Reine Angew. Math. 244 (1970), 119–153. MR 278096, DOI 10.1515/crll.1970.244.119
- E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions, Comm. Math. Phys. 22 (1971), 280–294. MR 345552, DOI 10.1007/BF01877511 8. B. Simon, Resonances for dilatation analytic potentials and the foundations of time dependent perturbation theory (to appear).
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373 11. B. Simon, Uniform cross-norms (to appear).
Additional Information
- Journal: Bull. Amer. Math. Soc. 78 (1972), 730-733
- MSC (1970): Primary 47A60; Secondary 46L15
- DOI: https://doi.org/10.1090/S0002-9904-1972-13007-6
- MathSciNet review: 0300127