Structurally stable diffeomorphisms are dense
Author:
Michael Shub
Journal:
Bull. Amer. Math. Soc. 78 (1972), 817-818
MSC (1970):
Primary 58F10
DOI:
https://doi.org/10.1090/S0002-9904-1972-13047-7
MathSciNet review:
0307278
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 175106, https://doi.org/10.1090/S0002-9947-1965-0175106-9
- 2. James R. Munkres, Elementary differential topology, Lectures given at Massachusetts Institute of Technology, Fall, vol. 1961, Princeton University Press, Princeton, N.J., 1963. MR 0163320
- 3. Zbigniew Nitecki, On semi-stability for diffeomorphisms, Invent. Math. 14 (1971), 83–122. MR 293671, https://doi.org/10.1007/BF01405359
- 4. M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101–120. MR 142859, https://doi.org/10.1016/0040-9383(65)90018-2
- 5. S. Smale, Structurally stable systems are not dense, Amer. J. Math. 88 (1966), 491–496. MR 196725, https://doi.org/10.2307/2373203
- 6. Steve Smale, Stability and isotopy in discrete dynamical systems, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 527–530. MR 0339222
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 58F10
Retrieve articles in all journals with MSC (1970): 58F10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1972-13047-7