INVARIANT SUBSPACES OF L^∞ AND H^∞

BY L. A. RUBEL1 AND A. L. SHIELDS2

Communicated by Alberto P. Calderón, August 8, 1972

Let T be the unit circle, and let L^∞ and H^∞ be the usual spaces of bounded functions. Let R be the group of rotations $z \mapsto e^{i\alpha}z$ and let M be the Möbius group

$$z \mapsto \frac{e^{i\alpha}z - z_0}{1 - \overline{z}_0z}.$$

Let R and M act on L^∞ by substitution.

Theorem 1. Let F be a closed M-invariant subspace of L^∞, with $z \in F$ and $zF \subseteq F$. Then F does not properly contain any closed M-invariant subspaces of finite codimension.

Examples of such subspaces F are $F = L^\infty$, $F = H^\infty$, $F = A$, $F = C(T)$, $F = \mathcal{A}$, and $F = \mathcal{A}_h$. Here, A is the disc algebra, \mathcal{A} is the space of functions in H^∞ that have radial limits along every radius, and \mathcal{A}_h is the space of functions in H^∞ for which the radial limit fails to exist at most on a set of e^θ of Hausdorff h-measure 0.

Theorem 2. There exists an R-invariant closed hyperplane in L^∞ that contains the space $C(T)$ but does not contain H^∞.

Corollary. There exists an R-invariant closed hyperplane in H^∞ that contains A.

Theorem 3. Let B be a closed R-invariant subspace of H^∞ with $B \supseteq \mathcal{A}_h$ such that either

(i) B/\mathcal{A}_h is separable or

(ii) B is a countably generated \mathcal{A}_h module.

Then $B = \mathcal{A}_h$.

The proofs, especially of Theorem 1, are long, and we will give the details in a subsequent paper, giving here only an outline of the main steps in the proof of Theorem 1.

To begin with, we remark that M is isomorphic to $\text{PSL}(2, \mathbb{R})$, which is

1 The research of the first author was partially supported by the National Science Foundation, and partially supported by a grant from the Air Force Office of Scientific Research, United States Air Force, under Grant Number AFOSR 68 1499.

2 The research of the second author was partially supported by the National Science Foundation.

INVARIANT SUBSPACES OF L^∞ AND H^∞

SL(2, \mathbb{R}) modulo its center. We suppose that $F \supseteq E$, where E is closed and M-invariant and $\dim F/E < \infty$.

Lemma 1. A bounded, finite dimensional representation of SL(2, \mathbb{R}) (in the discrete topology) must be trivial.

Lemma 2. If $F \not\subseteq E$ then F contains a closed M-invariant subspace E' such that $\dim F/E' = 1$.

From now on, we will suppose that $\dim F/E \leq 1$, and conclude that $F = E$.

Lemma 3. For any $f \in F$ and $\mu \in M$, $f - f \circ \mu \in E$.

Lemma 4. $E \supseteq A$.

Definition. The function $f \in L^\infty$ is M-analyzable, and we write $f \in \mathcal{U}_M$, if there is a complex constant in the norm-closed convex hull of the orbit of f under M.

Lemma 5. $E \supseteq \mathcal{U}_M \cap F$.

Lemma 6. If f is continuous at one point $z_0 \in T$, then $f \in \mathcal{U}_M$.

Lemma 7 (trivial). Any $f \in L^\infty$ may be written $f = f_1 + f_2$ where f_1 is continuous at $+1$ and f_2 is continuous at -1.

The combination of Lemmas 3–7 implies that $F = E$.

We acknowledge valuable help from T. Kaczynski, Y. Katznelson, and R. Ranga Rao.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, ILLINOIS 61801

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104