TOTALLY GEODESIC FIBRE MAPS

BY MU-CHOU LIU

Communicated by S. S. Chern, August 9, 1972

Let M be a Riemannian manifold and $\Pi: TM \to M$ be its tangent bundle. There exist two kinds of naturally induced metrics on TM, the Sasaki metric and the pseudo-Riemannian metric ([3], [4]). If TM is endowed with the Sasaki metric and M is compact, we have shown that TM is a complete Riemannian manifold which admits no negative curvature. In [4], Yano and Kobayashi determined the holonomy group of the pseudo-Riemannian connection on TM. A fibre map is said to be trivial if it collapses the whole fibre into a point.

Based on the results of Yano and Kobayashi, we prove the following

Theorem 1. Suppose M and N are Riemannian manifolds. If $F: TM \to TN$ is a totally geodesic fibre preserving map, then the induced map $f: M \to N$ is totally geodesic. If for some $u \in TM$, $\text{Ker} \ F^*_u$ contains a nonvertical vector, then F is trivial.

By using the Morse theory and Cartan-Hadamard Theorem together with the above theorem, we prove the following

Theorem 2. Suppose M is a Riemannian manifold, and suppose its Ricci curvature K satisfies $K(X, X) \geq (n - 1)/c^2$ for every unit vector X at every point of M, where c is a positive constant. If there exists a geodesic of length greater than Πc, and if N is a complete Riemannian manifold of negative curvature, then any fibre preserving totally geodesic map $F: TM \to TN$ is trivial.

Corollary. If $f: M \to N$ is a map such that the tangent map $f^*: TM \to TN$ is totally geodesic, then f is a constant map.

A direct consequence of Theorem 2 is the following:

Theorem 3. Suppose M is a compact Riemannian manifold with everywhere positive definite Ricci tensor. If N is a Riemannian manifold of negative curvature, then any fibre preserving totally geodesic map $F: TM \to TN$ is trivial.

The proofs of these results will appear in [2].

Key words and phrases. Totally geodesic fibre map, induced pseudo-Riemannian connection, holonomy group, Ricci curvature.

¹ Work partially supported by NSF grant 24917.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE, CHICAGO, ILLINOIS 60680