PERIODIC AND HOMOGENEOUS STATES
ON A VON NEUMANN ALGEBRA. I

BY MASAMICHI TAKESAKI

Communicated by Jack E. Feldman, June 14, 1972

This paper is devoted to announcing a structure theorem for von Neumann algebras admitting a periodic homogeneous faithful state (see Definitions 1 and 2).

Let \mathcal{M} be a von Neumann algebra. Suppose that ϕ is a faithful normal state on \mathcal{M}. We denote by σ_ϕ^t the modular automorphism group of \mathcal{M} associated with ϕ. Let $G(\phi)$ denote the group of all automorphisms of \mathcal{M} which leave ϕ invariant. We introduce the following terminologies concerning ϕ.

Definition 1. If there exists $T > 0$ such that σ_ϕ^T is the identity automorphism of \mathcal{M}, denoted by 1, then we call ϕ periodic. The smallest such number T is called the period of ϕ.

Definition 2. We call ϕ homogeneous if $G(\phi)$ acts ergodically on \mathcal{M}; that is, the fixed points of $G(\phi)$ are only scalar multiples of the identity.

Definition 3. We call ϕ ergodic if $\{\sigma_\phi^t\}$ is ergodic.

The ergodicity of ϕ implies the homogeneity of ϕ, since $\{\sigma_\phi^t\}$ is contained in $G(\phi)$. Furthermore, if \mathcal{M} admits an ergodic state, then \mathcal{M} must be a factor.

Now, suppose ϕ is a periodic homogeneous faithful normal state on \mathcal{M}, which will be fixed throughout the discussion. Considering the cyclic representation of \mathcal{M} induced by ϕ, we assume that \mathcal{M} acts on a Hilbert space \mathcal{H} with a distinguished cyclic vector ξ_0 such that $\phi(x) = (x\xi_0|\xi_0)$, $x \in \mathcal{M}$. According to the theory of modular Hilbert algebras (which the author proposes to call Tomita algebras), there exists the positive self-adjoint operator Δ on \mathcal{H} and the unitary involution J on \mathcal{H} such that

$$\sigma_\phi^t(x) = \Delta^{it}x\Delta^{-it}, \quad x \in \mathcal{M};$$

$$\Delta^{it}\xi_0 = \xi_0;$$

$$J\mathcal{M}J = \mathcal{M}'; \quad J\Delta^{it}J = \Delta^{it}.$$

Put $\alpha = e^{-2\pi i/T}$ with T the period of ϕ. Obviously, we have $0 < \alpha < 1$. We introduce the following notations:

Key words and phrases: von Neumann algebras, modular automorphism group, periodic state, homogeneous state.

The preparation of this paper was supported in part by NSF grant GP-28737.
\[M_n = \{ x \in M : \sigma_t^\phi(x) = \alpha^{int}x, t \in \mathbb{R} \}, \]
\[\mathcal{H}_n = \{ \xi \in \mathcal{H} : \Delta^t \xi = \alpha^{int} \xi, t \in \mathbb{R} \}, \]

for \(n = 0, \pm 1, \pm 2, \ldots \). Then \(M_0 \) is nothing but the centralizer \(M_{\phi} \) of \(\phi \) in the sense of [11, Definition 8.6]. The ergodicity of \(G(\phi) \) implies that \(M_n \neq \{0\} \) for every integer \(n \). The subspace \(M_n \) of \(M \) is also given by

\[\mathcal{H}_n = \{ x \in \mathcal{H} : \phi(xy) = \alpha^n \phi(yx) \text{ for every } y \in \mathcal{M} \}, \]

due to Størmer [9].

Lemma 4. We have the following:

(i) \(M_n M_m \subseteq M_{n+m} \), \(M_n^* = M_{-n} \);

(ii) \(M_n \mathcal{H}_m \subseteq \mathcal{H}_{n+m} \), \(J \mathcal{H}_n = \mathcal{H}_{-n} \);

(iii) \(\mathcal{H} = \sum_{n=-\infty}^{\infty} \mathcal{H}_n \);

(iv) \(\mathcal{H}_n = [\mathcal{H} \cap \mathcal{H}_0]^n \).

It is easily seen that the algebraic direct sum \(\sum_{n=-\infty}^{\infty} M_n \) is a \(\sigma \)-weakly dense *-subalgebra of \(M \). If \(N \) is a von Neumann subalgebra of \(M \) invariant under \(\sigma_t^\phi \), then the algebraic direct sum \(\sum_{n=-\infty}^{\infty} (N \cap M_n) \) is also a \(\sigma \)-weakly dense *-subalgebra of \(N \). Since \(M_n^* M_n \subseteq M_0 \) and \(M_n M_n^* \subseteq M_0 \), the absolute value \(|x| \) of every element \(x \) in \(M_n \) falls in \(M_0 \). Hence, if \(x \in M_n \) commutes with \(M_0 \), then \(x \) commutes with \(x^*x \) and \(xx^* \), so that \(x \) is normal, that is, \(x^*x = xx^* \). But this is impossible unless \(x \) is in \(M_0 \) because \(\alpha^n \phi(x^*x) = \phi(xx^*) \). Thus we obtain the following:

Proposition 5. The relative commutant \(M_0' \cap M \) of \(M_0 \) in \(M \) is contained in \(M_0 \) as the center of \(M_0 \), denoted by \(\mathcal{Z}_0 \).

We denote by \(\pi_n \) the normal representation of \(M_0 \) on \(\mathcal{H}_n \) defined by restricting the action of \(M_0 \) to \(\mathcal{H}_n \). We also define the antirepresentation \(\pi_n' \) of \(M_0 \) on \(\mathcal{H}_n \) by

\[\pi_n(a) = J\pi_{-n}(a)^*J, \quad a \in M_0. \]

For each \(x \in M_n \), we have

\[\pi_n(a)x \xi_0 = ax \xi_0; \]
\[\pi_n'(a)x \xi_0 = xa \xi_0, \quad x \in M_0. \]

Hence \(\pi_n \) and \(\pi_n' \) commute. Making use of the ergodicity of \(G(\phi) \), we can prove the following:

Lemma 6. Both \(\pi_n \) and \(\pi_n' \) are faithful.

For each \(g \in G(\phi) \), we define a unitary operator \(U(g) \) on \(\mathcal{H} \) by

\[U(g)x \xi_0 = g(x) \xi_0, \quad x \in M. \]

Then the map \(:g \in G(\phi) \mapsto U(g) \) is a representation of \(G(\phi) \) and covariant.
with the action of \(\mathcal{M} \). It is easily seen that
\[
U(g)\pi_n(x)U(g)^* = \pi_n \circ g(x); \\
U(g)\pi_n(x)U(g)^* = \pi_n \circ g(x), \quad x \in \mathcal{M}_0, g \in G(\phi).
\]
The ergodicity of \(G(\phi) \) on \(\mathcal{M}_0 \) yields that the coupling operator of \(\{\pi_n(\mathcal{M}_0), \mathcal{S}_n\} \) in the sense of Griffin [6] is a scalar multiple of the identity. Therefore, \(\{\pi_n(\mathcal{M}_0), \mathcal{S}_n\} \) has either a separating vector or a cyclic vector.

Lemma 7. For \(n \geq 1 \), \(\{\pi_n, \mathcal{S}_n\} \) does not have a separating vector.

Proof. Since every \(\xi \in \mathcal{S}_n \) is analytic for \(\Delta^u \), there exists a closed operator \(a \) affiliated with \(\mathcal{M} \) such that \(\xi = a\zeta_0 \). We can choose \(a \) so that \(\Delta^u a \Delta^{-u} = x^m a \). Let \(h = uh \) be the polar decomposition of \(a \). Then \(h \) is affiliated with \(\mathcal{M}_0 \) and \(u \in \mathcal{M}_n \). If \(\zeta \) is separating, then \(x\zeta = 0, x \in \mathcal{M}_0 \), implies \(x = 0 \), so that \(xu \in 0 \) implies \(x = 0 \). Hence \(uu^* = 1 \). But \(x^\phi(u^*u) = \phi(u^*u) = 1 \), so that \(\phi(u^*u) = x^{-n} > 1 \) if \(n \geq 1 \), a contradiction.

Therefore, \(\{\pi_n, \mathcal{S}_n\}, n \geq 1 \), has a cyclic vector \(\xi \), which is separating for \(\pi_{-n}(\mathcal{M}_0) \). If \(a = ku \) is the right polar decomposition of the above \(a \) in Lemma 7, then \(ux = 0, x \in \mathcal{M}_0 \), implies \(x = 0 \), so that we have \(u^*u = 1 \), and \(\phi(u^*u) = x^n \). We choose an element \(u_1 \) in \(\mathcal{M}_1 \) with \(u_1^*u_1 = 1 \), and fix it. Then \(u_1^* \) falls in \(\mathcal{M}_n \) for \(n \geq 1 \), and \(\mathcal{M}_n = \mathcal{M}_0u_1^* \) because \(\mathcal{M}_n u_1^* \in \mathcal{M}_0 \). Therefore we have
\[
\mathcal{M}_n = \mathcal{M}_0u_1^*; \\
\mathcal{M}_{-n} = u_1^*n\mathcal{M}_0, \quad n = 1, 2, \ldots.
\]
Thus the von Neumann algebra \(\mathcal{M} \) is generated by \(\mathcal{M}_0 \) and the isometry \(u_1 \). The choice of \(u_1 \) is unique in the following sense:

Lemma 8. Every partial isometry \(v \) in \(\mathcal{M}_1 \) is of the form \(wu_1 \) with a partial isometry \(w \) in \(\mathcal{M}_0 \).

Let \(e_{-n} \) denote the projections \(u_1^*u_1^* \) in \(\mathcal{M}_0 \) for \(n \geq 1 \). Then Lemma 8 implies, together with the ergodicity of \(G(\phi) \), that
\[
e_{-n} = x^n 1.
\]
Thus we conclude that \(\mathcal{M}_0 \) is of type \(II_1 \). We denote by \(e_n \) the projection \(Je_{-n}J \) in \(\mathcal{M}_0 \). Let \(\mathcal{S}_0 = e_n \mathcal{S}_0 \), for every integer \(n \).

Define an isomorphism \(\theta \) of \(\mathcal{M}_0 \) onto \(e_{-1}\mathcal{M}_0e_{-1} \) by \(\theta(x) = u_1xu_1^* \), \(x \in \mathcal{M}_0 \). Then the isomorphism \(\theta \) induces an automorphism \(\tilde{\theta} \) of \(\mathcal{L}_0 \) by the equality \(\theta(a) = \tilde{\theta}(a)e_{-1}, a \in \mathcal{L}_0 \). It follows from Lemma 8 that \(\tilde{\theta} \) does not depend on the choice of \(u_1 \).

Proposition 9. The center \(\mathcal{L} \) of \(\mathcal{M} \) is precisely the fixed point subalgebra of \(\mathcal{L}_0 \) with respect to \(\tilde{\theta} \). Therefore, \(\mathcal{M} \) is a factor if and only if \(\tilde{\theta} \) is ergodic on \(\mathcal{L}_0 \).
PROPOSITION 10. For $n \geq 1$, we have
\[\{\pi_n, S_n\} \cong \{\pi_0, R_n\}; \]
\[\{\pi_{-n}, S_{-n}\} \cong \{\theta^n, R_{-n}\}, \]
where $\{\pi_0, R_n\}$ means the restriction of π_0 to the invariant subspace R_n.

We denote by ϕ_0 the restriction of ϕ to \mathcal{M}.

THEOREM 11. In the pre-Hilbert space metric given by the state ϕ, the von Neumann algebra \mathcal{M} is decomposed as
\[\mathcal{M} = \cdots \oplus u_{1}^n \mathcal{M}_0 \oplus \cdots \oplus u_{1}^{*} \mathcal{M}_0 \oplus \mathcal{M}_0 u_{1} \oplus \cdots \oplus \mathcal{M}_0 u_{1}^{*} \oplus \cdots. \]

The algebraic structure of (\mathcal{M}, ϕ) is determined by $\{\mathcal{M}_0, \theta, \phi_0\}$ in the following sense: Let $\tilde{\mathcal{M}}$ be another von Neumann algebra equipped with a periodic homogeneous faithful state $\tilde{\phi}$ of period T and let $\tilde{\mathcal{M}}$ be decomposed with respect to $\tilde{\phi}$ as
\[\tilde{\mathcal{M}} = \cdots \oplus \tilde{u}_1 \tilde{\mathcal{M}}_0 \oplus \cdots \oplus \tilde{u}_1^{*} \tilde{\mathcal{M}}_0 \oplus \tilde{\mathcal{M}}_0 \tilde{u}_1 \oplus \cdots \oplus \tilde{\mathcal{M}}_0 \tilde{u}_1^{*} \oplus \cdots. \]

Suppose \tilde{u}_1 gives rise to an isomorphism of θ of $\tilde{\mathcal{M}}_0$ onto $\tilde{\mathcal{M}}_0 \tilde{\mathcal{M}}_0 \tilde{\mathcal{M}}_0^{-1}$. Then there exists an isomorphism σ of \mathcal{M} onto $\tilde{\mathcal{M}}$ with $\phi = \phi \circ \sigma$ if and only if there exists an isomorphism σ_0 of \mathcal{M}_0 onto $\tilde{\mathcal{M}}_0$ and a partial isometry w in \mathcal{M}_0 such that $w \theta(x) w^* = \sigma_0^{-1} \circ \theta \circ \sigma_0(x)$, $x \in \mathcal{M}_0$, and $\phi_0 = \phi_0 \circ \sigma$, where ϕ_0 (resp. ϕ_0) means the restriction of ϕ (resp. ϕ) to \mathcal{M}_0 (resp. $\tilde{\mathcal{M}}_0$).

Conversely, if \mathcal{M}_0 is a von Neumann algebra of type II_1. Let e be a projection of \mathcal{M}_0 with $e^2 = \alpha$, $0 < \alpha < 1$. Suppose θ is an isomorphism of \mathcal{M}_0 onto $e \mathcal{M}_0 e$. Then θ induces an automorphism $\tilde{\theta}$ of the center \mathcal{Z} of \mathcal{M}_0 such that $\tilde{\theta}(a)e = \theta(a)e$, $a \in \mathcal{Z}_0$. Let ϕ_0 be a $\tilde{\theta}$-invariant faithful normal state on \mathcal{Z}_0. We extend ϕ_0 to a faithful normal trace on \mathcal{M}_0 by $\phi_0(x) = \phi_0(x^e)$, $x \in \mathcal{M}_0$. Suppose G denotes the group of all automorphisms g of \mathcal{M}_0 such that there exists a partial isometry w_g in \mathcal{M}_0 with $g \circ \theta \circ g^{-1}(x) = w_g \theta(x) w_g^*$, and such that $\phi_0 \circ g = \phi_0$ (this is satisfied automatically if $\tilde{\theta}$ is ergodic). Such an automorphism is called admissible.

THEOREM 12. In the above situation, if G acts ergodically on the center \mathcal{Z}_0, then there exists a von Neumann algebra \mathcal{M} with a periodic homogeneous faithful state ϕ of period $T = -2\pi/\log \alpha$ such that $\{\mathcal{M}_0, \theta, \phi_0\}$ appears in the decomposition of \mathcal{M} associated with ϕ as described in Theorem 11.

We denote by $\mathcal{R}(\mathcal{M}_0, \theta, \phi_0)$ the von Neumann algebra determined by $(\mathcal{M}_0, \theta, \phi_0)$ in Theorems 11 and 12. We can describe the automorphism group $G(\phi)$ in terms of G and the unitary group of \mathcal{Z}_0. In order to distinguish the algebraic type of $\mathcal{R}(\mathcal{M}_0, \theta, \phi_0)$, we employ new results of A. Connes [4] concerning modular automorphism groups.
For a von Neumann algebra \(M \), let \(\text{Aut}(M) \) (resp. \(\text{Int}(M) \)) denote the group of all (resp. inner) automorphisms of \(M \). Let \(\text{Out}(M) \) denote the quotient group \(\text{Aut}(M)/\text{Int}(M) \). A. Connes showed recently that the canonical image \(\sigma^\phi_t \) of the modular automorphism group \(\sigma^\phi_t \) in \(\text{Out}(M) \) does not depend on the choice of \(\phi \); hence we denote it simply by \(\sigma_t \). Furthermore he proved that if \(\sigma^\phi_t \) is inner for some \(T > 0 \), then \(\sigma_t \) is given by a unitary operator in the center of the centralizer \(M_\phi \) of \(\phi \).

Now, we return to the original situation. In order to avoid any possible confusion, we denote by \(T_0 \) the period of our state \(\phi \).

Theorem 13. For \(T > 0 \), \(\sigma_t \) is inner, that is, \(\sigma_T = \text{identity} \), if and only if \(\alpha^{-IT} \) is a point spectrum of the automorphism \(\tilde{\theta} \) of \(\mathcal{Z}_0 \).

Therefore, if we have ergodic automorphisms \(\tilde{\theta} \) in \(\mathcal{Z}_0 \) of different point spectral type, then the resulting factors \(\mathcal{Z}(\mathcal{M}_0, \theta, \phi_0) \) are nonisomorphic.

Examples. Let \(\mathcal{F} \) denote a hyperfinite II\(_1\) factor and \(\mathcal{A} = L^\infty(0,1) \). Let \(\mathcal{M}_0 = \mathcal{F} \otimes \mathcal{A} \). For \(0 < \alpha < 1 \), we choose a projection \(f \in \mathcal{F} \) with \(\tau(f) = \alpha \), where \(\tau \) is the canonical trace of \(\mathcal{F} \). It is then known that there exists an isomorphism \(\theta_1 \) of \(\mathcal{F} \) onto \(f \mathcal{F} f \). Let \(\tilde{\theta} \) be an ergodic automorphism of \(\mathcal{A} \) with invariant faithful normal state \(\mu \). Let \(\theta_0 = \theta_1 \otimes \tilde{\theta} \) and \(\phi_0 = \tau \otimes \mu \). Then the triplet \(\{ \mathcal{M}_0, \theta, \phi_0 \} \) satisfies all our requirements, since the automorphism \(\text{id} \otimes \tilde{\theta}^n, n = 0 \pm 1, \pm 2, \ldots \), are admissible and ergodic on the center \(\mathcal{Z}_0 = 1 \otimes \mathcal{A} \). Thus, if we choose various kinds of ergodic automorphisms \(\tilde{\theta} \), then we get different kinds of modular groups \(\sigma_t \) as well as different factors.

References

Department of Mathematics, University of California, Los Angeles, California 90024