On subspaces of separable norm ideals
HTML articles powered by AMS MathViewer
 by J. R. Holub PDF
 Bull. Amer. Math. Soc. 79 (1973), 446448
References

1. M. S. Brodskiĭ, I. C. Gohberg, M. G. Kreĭn and V. I. Macaev, Some investigations in the theory of nonselfadjoint operators, Proc. Fourth AllUnion Math. Congress, vol. II: Sectional Lectures, “Nauka”, Leningrad, 1964, pp. 261271; English transl., Amer. Math. Soc. Transl. (2) 65 (1967), 237251. MR 36 #3153.
 J. W. Calkin, Twosided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839–873. MR 5790, DOI 10.2307/1968771
 Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New YorkLondon, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
 Jesús Gil de Lamadrid, Uniform cross norms and tensor products of Banach algebras, Duke Math. J. 32 (1965), 359–368. MR 190714 5. I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, “Nauka”, Moscow, 1965; English transl., Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R.I., 1969. MR 36 #3137; MR 39 #7447.
 I. C. Gohberg and M. G. Kreĭn, On the theory of triangular representations of nonselfadjoint operators, Dokl. Akad. Nauk SSSR 137 (1961), 1034–1037 (Russian). MR 0139946
 I. C. Gohberg and M. G. Kreĭn, Volterra operators with imaginary component in one class or another, Dokl. Akad. Nauk SSSR 139 (1961), 779–782 (Russian). MR 0139947
 V. I. Macaev, A class of completely continuous operators, Dokl. Akad. Nauk SSSR 139 (1961), 548–551 (Russian). MR 0131769
 Charles A. McCarthy, $c_{p}$, Israel J. Math. 5 (1967), 249–271. MR 225140, DOI 10.1007/BF02771613
 J. R. Retherford, A semishrinking basis which is not shrinking, Proc. Amer. Math. Soc. 19 (1968), 766. MR 225144, DOI 10.1090/S00029939196802251440
 Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, SpringerVerlag, BerlinGöttingenHeidelberg, 1960. MR 0119112, DOI 10.1007/9783642876523
 Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, SpringerVerlag, New YorkBerlin, 1970. MR 0298399, DOI 10.1007/9783642516337
Additional Information
 Journal: Bull. Amer. Math. Soc. 79 (1973), 446448
 MSC (1970): Primary 46L15, 46B05, 46B10, 46C10
 DOI: https://doi.org/10.1090/S000299041973132082
 MathSciNet review: 0313880