The probability of connectedness of a large unlabelled graph

Author:
E. M. Wright

Journal:
Bull. Amer. Math. Soc. **79** (1973), 767-769

MSC (1970):
Primary 05C30

DOI:
https://doi.org/10.1090/S0002-9904-1973-13307-5

MathSciNet review:
0371706

Full-text PDF

References | Similar Articles | Additional Information

**1.**P. Erdös and A. Renyi,*On random graphs*. I, Publ. Math. 6 (1959), 290-297. MR 22 #10924. MR**120167****2.**E. N. Gilbert,*Enumeration of labelled graphs*, Canad. J. Math 8 (1956), 405-411. MR**81470****3.**M. L. and P. R. Stein,*Enumeration of linear graphs and connected linear graphs up to P*= 18*points*, Los Alamos Scientific Laboratory, 1963.**4.**E. M. Wright,*Asymptotic enumeration of connected graphs*, Proc. Roy. Soc. Edinburgh A68 (1970), 298-308. MR**266820****5.**E. M. Wright,*Graphs on unlabelled nodes with a given number of edges*, Acta Math. 126 (1970), 1-9. MR 42 #2975. MR**268076****6.**E. M. Wright,*The probability of connectedness of an unlabelled graph can be less for more edges*, Proc. Amer. Math. Soc. 35 (1972), 21-25. MR**295954****7.**E. M. Wright,*The number of unlabelled graphs with many nodes and edges*, Bull. Amer. Math. Soc. 78 (1972), 1032-1034. MR**311508**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1970):
05C30

Retrieve articles in all journals with MSC (1970): 05C30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1973-13307-5