GLOBAL DEFINABILITY THEORY IN $L_{\omega_1\omega}$

BY M. MAKKAI

Communicated by A. H. Lachlan, February 23, 1973

Introduction. Results in definability theory which are about a fixed structure are called “local” by Reyes [R]. An example is Scott’s definability theorem [Sc]. In contrast, “global” results are about the class of models of a sentence (theory); an example is Svenonius’ theorem [Sv]. Note that the straight analogue for $L_{\omega_1\omega}$ of Svenonius’ theorem, if true, would be a global generalization of Scott’s theorem, i.e., the latter would be obtained by applying the former to the Scott sentence of the given structure. Although this generalization is false, Motohashi [Mo] has found a totally satisfactory global generalization of Scott’s theorem (his result is explained below).

We give two distinct global generalizations of a local weak-definability theorem by Kueker [Ku 1] and Reyes [R] (Theorems 1 and 2 and Corollary (A)) and one for Kueker’s local theorem in [Ku 1] on structures with only countably many automorphisms (Theorem 3 and Corollary (E)). In Theorems 2 and 3, we utilize Motohashi’s work. Theorem 4 is related to [Ku 2].

1. Results. L denotes a fixed countable language, $L_{\omega_1\omega}$ the finite-quantifier logic with countable conjunctions and disjunctions based on L. P is an additional predicate symbol, $L_{\omega_1\omega}(P)$ is the corresponding extension of $L_{\omega_1\omega}$. \mathfrak{A} and (\mathfrak{A}, P) denote structures for $L_{\omega_1\omega}$ and $L_{\omega_1\omega}(P)$, resp. Following [Ku 1], we write $M_\sigma(\mathfrak{A})$ for $\{P: (\mathfrak{A}, P) \models \sigma\}$ and $M(\mathfrak{A}, P)$ for $\{Q: (\mathfrak{A}, Q) \text{ is isomorphic to } (\mathfrak{A}, P)\}$. $|X|$ is the cardinality of X.

Theorem 1. For any sentence σ in $L_{\omega_1\omega}(P)$, (i) \iff (ii).

(i) For every countable \mathfrak{A}, $|M_\sigma(\mathfrak{A})| \leq \aleph_0$ (or, equivalently, $< 2^{\aleph_0}$).

(ii) For some formulas $\varphi_n(\bar{x}, \bar{u})$ ($n < \omega$) of $L_{\omega_1\omega}$,

$$\sigma \models \bigvee_{n < \omega} \exists \bar{u}^n \forall \bar{x} [\exists \bar{x} [P \bar{x} \leftrightarrow \varphi_n(\bar{x}, \bar{u}^n)]]$$

Theorem 1 is a direct analogue of the weak-definability theorem for finitary logic of Chang [C] and the author [Ma 1], as improved by Reyes [R] for countable structures. In fact, our proof gives the result for all admissible fragments of $L_{\omega_1\omega}$ (with the whole formula after “\models” in (ii) being in the fragment). A similar remark applies for our subsequent

1 Research supported by the National Research Council of Canada.
GLOBAL DEFINABILITY THEORY IN $L_{\omega_1\omega}$

results. Taking σ to be the Scott sentence of (\mathcal{U}, P), we obtain

Corollary (A) (KUEKER [Ku 1], REYES [R]). $|M(\mathcal{U}, P)| \leq \aleph_0$ \iff \(|M(\mathcal{U}, P)| < 2^{\aleph_0}\) \iff for some finitely many elements a of A, P is definable in (\mathcal{U}, a) by an $L_{\omega_1\omega}$-formula with the parameters a.

Our next two theorems utilize work of Motohashi [Mo]. Let X, Y be disjoint infinite sets of variables. x, x_i, \ldots denote variables from X; y, y_i, \ldots from Y; $\bar{x}, \bar{x}^i, \ldots$ vectors of x's, similarly for \bar{y}, \bar{y}^i.

Definition (Motohashi). A formula θ in $L_{\omega_1\omega}(P)$ is called a Motohashi formula (M-formula) if every atomic subformula of θ is of the form either $\forall(x)$ or $\exists(x)$ with $\forall(-)$ in $L_{\omega_1\omega}$ or else P_a.

The following are easily seen.

Proposition (B) ([Mo]). A finitary M-formula $\theta(\bar{x})$ is logically equivalent to a finitary formula of the form $\bigwedge_{i < \omega} [\sigma_i \rightarrow \varphi_i(\bar{x})]$, σ_i sentences in $L_{\omega_1\omega}(P)$, $\varphi_i(\bar{x})$ in $L_{\omega_1\omega}$.

(C) For given countable (\mathcal{U}, P), $\theta(\bar{x}, \bar{y})$ an M-formula, a^0 elements of A, $\theta(\bar{x}, \bar{a}^0)$ is equivalent in (\mathcal{U}, P, a^0) to an $L_{\omega_1\omega}$-formula $\varphi(\bar{x})$ without parameters.

To obtain φ in (C), convert in θ each y-quantifier, $\forall y \cdots y \cdots$ into $\bigwedge_{a \in A} \cdots a \cdots$, with a a new constant for $a \in A$, and similarly for $\exists y$. Then replace each resulting atomic formula $\pi(\bar{a})$, $P\bar{a}$ by its actual truth-value in (\mathcal{U}, P).

Theorem (D) (Motohashi [Mo]). For any σ in $L_{\omega_1\omega}(P)$, (i) \iff (ii).

(i) For all (or, for all countable) $(\mathcal{U}, P) \models \sigma$, $|M(\mathcal{U}, P)| = 1$.

(ii) $\sigma \models \forall \bar{x}[P\bar{x} \leftrightarrow \theta(\bar{x})]$ for some M-formula $\theta(\bar{x})$.

By (C), (ii) obviously implies (i). (D) can be proved by an application of Feferman’s many-sorted interpolation theorem [F]. This proof as well as Motohashi’s proof in [Mo] gives the result for all admissible fragments of $L_{\omega_1\omega}$. Hence by (B), (D) implies Svenonius’ theorem [Sv]. Also by (C), (D) implies Scott’s definability theorem [Sc] (apply (D) for the Scott sentence σ of (\mathcal{U}, P)).

Theorem 2. For any sentence σ in $L_{\omega_1\omega}(P)$, (i) \iff (ii).

(i) For all countable $(\mathcal{U}, P) \models \sigma$, we have $|M(\mathcal{U}, P)| \leq \aleph_0$ (or, $< 2^{\aleph_0}$).

(ii) $\sigma \models \forall \bar{x} \exists \bar{y} \forall \bar{x}[P\bar{x} \leftrightarrow \theta_{i}(\bar{x}, \bar{x}^i, \bar{y}^i)]$ for some M-formulas $\theta_{i}(i < \omega)$.

By (C), (ii) obviously implies (i). For the same reason, Theorem 2 specializes to (A) if σ is the Scott sentence of (\mathcal{U}, P). By (B), Theorem 2 for finitary logic is a form of the weak-definability theorem [C], [Ma 1], [R]. As Motohashi [Mo] shows, conditions (i) in Theorems 1 and 2 are
not equivalent for $L_{\omega_1\omega}(P)$, unlike in the finitary case. In fact, even (i) in (D) does not imply (i) in Theorem 1.

Theorem 3. For any sentence σ in $L_{\omega_1\omega}$, (i) \iff (ii).

(i) For all countable $\mathfrak{U} \models \sigma$, \mathfrak{U} has at most countably many (or equivalently, less than 2^{\aleph_0}) automorphisms.

(ii) $\sigma \models \forall_{i<\omega} \exists x^i \forall y \forall x[x = y \leftrightarrow \theta_i(x, y, x^i, y^i)]$ for some M-formulas $\theta_i (i < \omega)$ without P.

By Proposition (C), in any given \mathfrak{U}, the part after "\forall y" of the formula in (ii) implies that y is definable in \mathfrak{U} with the parameters x^i. Hence Theorem 3 has the following

Corollary (E) (Kueker [Ku 1]). For any countable \mathfrak{U}, \mathfrak{U} has at most countably many (less than 2^{\aleph_0}) automorphisms iff there are some finitely many elements a of A such that every element of A is definable in (\mathfrak{U}, a) by an $L_{\omega_1\omega}$-formula.

The finitary version of Theorem 3 is, via (B), the well-known result that every finitary sentence with infinite models has a countable model with 2^{\aleph_0} automorphisms.

Our last result utilizes, and adds to, Kueker’s work on “finite generalizations” of Beth’s theorem [Ku 2].

Theorem 4. For any σ in $L_{\omega_1\omega}(P)$, (i) \iff (ii).

(i) For all (or, for all countable) \mathfrak{U}, $|M_{\sigma}(\mathfrak{U})| < \aleph_0$.

(ii) $\sigma \models \forall_{n<\omega} \exists \bar{\phi}_n(\bar{v}^n) \land \forall \bar{v}^n [\phi_n(\bar{v}^n) \rightarrow \forall_{i<n} \forall x[Px \leftrightarrow \phi_n,i(x, \bar{v}^n)]]$ for some $\phi_n,i(x, \bar{v}^n)$ in $L_{\omega_1\omega}$.

2. **Proofs.** The proofs use abstract consistency properties (see [Ke], [Ma 2], [Ma 3]) and in case of Theorems 2 and 3, approximation of automorphisms by finite pieces similarly as in the proofs in [Ma 3]. We will show the proof of Theorem 2 in some detail.

Proof of Theorem 2. Let C be a countably infinite set of new individual constants. Define Γ_2 to be the collection of objects $\gamma = \langle s, f_i \rangle_{i \in I}$ such that s is a finite set of sentences of $L_{\omega_1\omega}(P)(C)$ in negation normal form (n.n.f.) with only finitely many constants from C, I is a finite set, each f_i is a finite subset of $C \times C$, and such that (the main condition) there is no formula μ with (i)$_2(\gamma, \mu)$ where:

(i)$_2(\gamma, \mu)$ is of the form of the formula after “\models” in Theorem 2(ii) and whenever $(\mathfrak{U}, P, \bar{c}) \in C$ is a model of s and, for $i \in I$, g_i is an automorphism of \mathfrak{U} such that $\langle c, d \rangle \in f_i \Rightarrow \langle \bar{c}, \bar{d} \rangle \in g_i$, then $\mathfrak{U} \models \mu$.

Suppose σ is in n.n.f. and it does not satisfy (ii) in Theorem 2. Then clearly $\gamma_0 = \sigma \langle \{ \sigma \} \rangle \notin \mathfrak{U}$ belongs to Γ_2. We successively extend this element
of Γ_2, always remaining in Γ_2, such that the limit of the procedure yields, in a natural way, a model (\mathfrak{M}, P) with $|M(\mathfrak{M}, P)| = 2^{\omega_0}$.

Lemma (ii). For fixed I and f_i ($i \in I$), \{s; $\langle s, f_i \rangle_{i \in I} \in \Gamma_2$\} is an abstract consistency property.

(iii) For any $\gamma = \langle s, f_i \rangle_{i \in I} \in \Gamma_2$, $j \in I$, $c \in C$, let $d \neq c$ and let d not occur in γ. Then

$$\langle s, f_i, f_j \cup \{\langle c, d \rangle \} \rangle_{i \in I \setminus \{j\}} \quad \text{and} \quad \langle s, f_i, f_j \cup \{\langle d, c \rangle \} \rangle_{i \in I \setminus \{j\}}$$

belong to Γ_2.

Comment. (iii) will be used to make sure that the domains and ranges of purported automorphisms will indeed be the whole domain (in this case, essentially C) of the structure.

(iv) Let γ and i be as in (iii). Let c, d_1, d_2 be distinct constants in C but not in γ. Put $f_j' = f_j \cup \{\langle d_1, c \rangle \}$, $f_j'' = f_j \cup \{\langle d_2, c \rangle \}$ and $s' = s \cup \{Pd_1, \neg Pd_2\}$. Then $\gamma' = \langle s', f_i, f_j', f_j'' \rangle_{i \in I \setminus \{j\}} \in \Gamma_2$.

Comment. (iv) is used to “split” a finite approximation f_j into two. Eventually the infinite paths of the tree of such approximations will be the automorphisms and they will give us 2^{ω_0} images of P. Note that for “extensions” g_1', g_2' of f_1', f_2', resp., "$g_1P \neq g_2''P$".

Proof of (iv). Introduce new operation symbols g_i ($i \in I$). The assumption that $\gamma' \notin \Gamma_2$ leads to the existence of μ' with $(ii_2(\gamma', \mu'))$. Let ξ be the formula $\neg \mu' \land \bigwedge_i s \land \bigwedge_i g_i \text{ "is an L-automorphism extending } f_i'\text{"}$. By $(i_2)(\gamma', \mu')$

(v) $(\mathfrak{M}, P, \tilde{c}, g_i)_{c \in \text{dom } f_j} \models \xi$ implies that every automorphism of $(\mathfrak{M}, \tilde{c})_{c \in \text{dom } f_j}$ leaves P fixed.

Hence by (an inessential strengthening of) (D),

(vi) $\xi \models \forall x[P\tilde{x} \leftrightarrow \theta(\tilde{x}, \tilde{c})]$ for $\tilde{c} = \text{dom } f_j$ and for some Motohashi formula $\theta(\tilde{x}, \tilde{x}', \tilde{y}')$. Hence $\xi \models \mu''$ where $\mu'' = \exists \tilde{x}' \tilde{y}' \forall \tilde{x} [P\tilde{x} \leftrightarrow \theta(\tilde{x}, \tilde{x}', \tilde{y}')]$. It follows that

(i) $2(\gamma', \mu' \lor \mu')$ holds, contrary to $\gamma \in \Gamma_2$.

Now, let I_n be the set of finite 0-1 sequences of length n. Let $C = \{c_n: n < \omega\}$. We construct a sequence γ_n ($n < \omega$) of elements of Γ_2 starting with $\gamma_0 = \langle \{\sigma\}, \emptyset \rangle$ such that $\gamma_n = \langle s_n, f^n_i \rangle_{i \in I_n}$, $s_n \subseteq s_{n+1}$, $f^n_i \subseteq f^{n+1}_i$ for $j = i \cap \langle 0 \rangle, i \cap \langle 1 \rangle$ and

(vii) $s_0 = \bigcup_{n < \omega} s_n$ is pseudocomplete (see 1.3 Definition in [Ma 2]) or, what is the same, the s_n satisfy (1)-(5) on p. 13 in [Ke] (here we use (iii)),

(viii) $c_n \in \text{dom } f^n_{i_0+1} \cap \text{rn } f^n_{i_1+1} (i \in I_n)$ (here we use (iii)), and

(ix) for each n and $i \in I_n$, there are $d_0 \in \text{dom } f^n_{j_0+1}, d_1 \in \text{dom } f^n_{j_1+1}$ and $c \in \text{rn } f^n_{j_0+1} \cap \text{rn } f^n_{j_1+1}$ (here $j_0 = i \cap \langle 0 \rangle$, $j_1 = i \cap \langle 1 \rangle$) such that $\{Pd_0, \neg Pd_1\} \subseteq s_{n+1}$ (here we use (iv)).
For the canonical model $\langle \mathfrak{U}, P, \mathcal{C} \rangle$ of s_α (see the proof of the model existence theorem in [Ke], or 1.4 in [Ma 3]) we have

(x) $\mathfrak{U} \models \sigma$,

(xi) the maps $f_a = \{ (c, d) : (c, d) \in \bigcup_{n<\omega} f_a^n \}$ for $\alpha = \omega$ are automorphisms of \mathfrak{U} (mainly by (viii)) and

(xii) $f_a P \neq f_a P$ for $\alpha \neq \alpha'$ by (ix). Q.E.D.

ON THE PROOF OF THEOREM 1. The collection playing the role of Γ_2 above, Γ_1, is defined as follows. Let P denote distinct predicate symbols of the same arity as P, and let us write $s(P_i)$ for a set of sentences in $L_{\omega_1 \omega}(P_i(C))$. Let Δ_I be the set of sentences of the form

$$\bigvee_{i \in I} \forall \forall \exists \bar{x} \ [P_i \bar{x} \leftrightarrow \phi_n^i(\bar{x}, \bar{u})]$$

where the ϕ_n^i are in $L_{\omega_1 \omega}$. We define Γ_1 to be the collection of objects $\gamma = \langle s(P_i) \rangle_{i \in I}$ with similar finiteness conditions as for Γ_2 and such that there is no μ with (i)(γ, μ) where:

(i)(γ, μ) $\mu \in \Delta_I$ and $\bigcup_{i \in I} s(P_i) = \mu$.

The crucial fact analogous to (iv) above is that for γ as above, and a fixed $j \in I$, if we put $s_j'(P_j) = s_j(P_j) \cup \{ P_j c, \neg (s_j(P_j) \cup \{ \neg P_j c \}$ with $c \in C$ a constant not in γ, then $\langle s_j(P_j), s_j'(P_j) \rangle_{i \in I \ldots (j)}$ again belongs to Γ_1. The proof of this applies the Beth-Lopez-Escobar theorem.

ON THE PROOF OF THEOREM 3. It is very similar to that of Theorem 2 and applies a corollary to (D); if every model of σ has no nontrivial automorphisms, then $\sigma \models \forall y \forall x [x = y \leftrightarrow \theta(x, y)]$ for some M-formula θ without P.

ON THE PROOF OF THEOREM 4. Let us call a formula of the form after "\models" in Theorem 4 (ii) a K-formula. Consider $\sigma = \sigma(P)$ not satisfying (ii). Define $\Gamma_4 = S_4$ to be the set of sets $s(P_0, \ldots, P_{n-1})$ of sentences of $L_{\omega_1 \omega}(P_0, \ldots, P_{n-1}) (C)$ with the usual finiteness conditions such that for any K-formula $\kappa(P)$, $s \not\models \sigma(P) \rightarrow \kappa(P)$. The crucial property of S_4 is that if $s \in S_4$ is as above then $s \cup \{ s(P_n), \ "P_n \neq P_1", \ "P_n \neq P_2", \ldots, \ "P_n \neq P_{n-1}" \}$ belongs to S_4. Also, S_4 is an abstract consistency property.

ADDED IN PROOF (May 2, 1973). Jon Barwise noticed that Theorem 1 remains true if we replace σ by a Σ_1^1-over-$L_{\omega_1 \omega}(P)$ sentence $\exists \bar{S} \sigma(P, \bar{S})$. A similar remark holds for the rest of the theorems too. In fact, no essential change is required in the proofs. Barwise also noticed that from the Σ_1^1 generalization of Theorem 1 in the "admissible version," the following strengthening of a theorem due to J. Harrison results immediately: If a Σ_1^1 set of reals does not contain a perfect subset, it is a subset of a set constructible below ω_1^K (Kleene's ω_1) (notice that our proof gives in fact a perfect subset of $M_{\omega_1}(\mathfrak{U})$). Subsequently, the author noticed that the Σ_1^1 generalization of Theorem 1 (formulated with "perfect subset") combined...
with an approximation theorem of Vaught (any constructible Π^1_1-over-$L_{\omega_1,\omega}$ sentence is equivalent for countable structures to $\bigvee_{\delta \in \omega_1} \delta \delta$ with some constructible sequence $\langle \delta : \alpha < \omega_1 \rangle$ of $L_{\omega_1,\omega}$-sentences) directly (and without the use of forcing) gives Mansfield's theorem: any Σ^1_2 set of reals not containing a perfect subset is constructible.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, CANADA

Current address: Centre de Recherches Mathematiques, Universite de Montreal, Montreal, Canada