THE FACTORIZATION OF AN INTEGRAL MATRIX INTO A PRODUCT OF TWO INTEGRAL SYMMETRIC MATRICES

BY OLGA TAUSKY

Communicated on January 31, 1973

A theorem going back to Frobenius, but refound repeatedly (for references see [5], generalized to arbitrary fields states:

Every $n \times n$ matrix $A = (a_{ik})$ with elements in a field F is similar to its transpose A':

(1) $A' = S^{-1}AS$

where S can be chosen symmetric and with elements in F. This is equivalent to the fact that every A can be expressed in the form

(2) $A = S_1S_2$

when S_1, S_2 are symmetric, with elements in F where S_1 is nonsingular.

Here a new concept is introduced. It is a form of degree n associated with the matrix.\(^2\) For relation (1) implies

(3) $SA' = AS$.

This leads to a set of linear equations for the elements of the symmetric matrix S. If A has all its roots different (though the general case leads to relevant results too) then the number of F-independent symmetric solutions S of (3) is n. The elements of S are then linear forms in n parameters and $\det S$ is a form of degree n in n variables. It is this form which plays an important role. If A is replaced by a matrix similar to A then S undergoes a congruence transformation and the form is multiplied by a square factor in F.

For $n = 2$ relation (3) leads to a single equation in 3 variables. This equation is given by

(4) $a_{21}x_1 + (a_{22} - a_{11})x_2 - a_{12}x_3 = 0$

\(^1\) This work was carried out (in part) under an NSF contract; I have profited from discussions with E. Bender, J. Brillhart, E. C. Dade, D. Estes, H. Kisilevsky.

\(^2\) W. Givens informs me that he also considered such a form.
if $S = (z_1^t \ z_2^t)$. Apart from a multiple this form is given by

$$a(\lambda, \mu) = (\alpha_1\alpha_3 - \alpha_2^2)\lambda^2 + (\alpha_1\beta_3 - 2\alpha_2\beta_2 + \alpha_3\beta_1)\lambda\mu + (\beta_1\beta_3 - \beta_2^2)\mu^2$$

where α_1, α_2, α_3 and β_1, β_2, β_3 are a pair of independent solutions of (4). It can be shown that the discriminant of (5) and the discriminant of the form

$$a_{21}x^2 + (a_{22} - a_{11})xy + a_{12}y^2$$

differ by a square factor. The latter discriminant is also the discriminant of the characteristic polynomial of A.

The emphasis of the present research is on the case where A in (2) is a rational integral matrix and on the question under what circumstances

$$A = S_1S_2, \ S_i = S_i^t, \ S_i \text{ with elements in } \mathbb{Z}.$$

For $n = 2$ a number of results have been obtained in [6], [7], e.g.:

1. If $\gcd(a_{21}, (a_{22} - a_{11}), a_{12}) = g$ then the discriminant of (5) and of (6) coincide apart from the factor g^2. Here the solutions α_1, α_2, α_3; β_1, β_2, β_3 are assumed to be integral basis vectors for the lattice of all integral solutions of (4).

2. Let the characteristic polynomial of A be $x^2 - m$, when $m \equiv 2, 3(4)$ and square free. Then (7) can only hold if the ideal class associated with A by the relation

$$A \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \alpha \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

is of order 1 or 2 or 4. Here α is a characteristic root of A and α_1, $\alpha_2 \in \mathbb{Z}[\alpha]$ form a basis for an ideal U in $\mathbb{Z}[\alpha]$.

3. Relation (7) holds for A if and only if the form (5) represents a factor d of m (the discriminant of (5) is $4m$). In this case $-m/d$ is also represented so that in (7) one of the S_i has determinant d, the other $-m/d$.

4. For an arbitrary 2×2 integral A the following fact holds: relation (7) can be satisfied if and only if the form (5) can be transformed by a unimodular similarity to a form whose middle coefficient is trace A.

5. Every integral 2×2 matrix can be factored as in (7) when a suitable integral scalar matrix is added to it.

In the case of general n and the characteristic polynomial $f(x)$ of A irreducible the problem can be studied via a result obtained previously (see [4]) by several authors.

3 Since (4) defines a plane in 3-space the null-space of the binary quadratic form attached to A can be regarded as the intersection of the plane with the cone $x_1x_3 - x_2^2 = 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
If A and S in (1) are integral then $S = \text{trace } A \alpha$ where $\lambda \in \mathbb{Q}(\alpha)$, α a zero of $f(x)$ and $\alpha_1, \ldots, \alpha_n$ form a basis for the ideal \mathfrak{U} constructed as in (8). From this follows that for S to be integral it is necessary and sufficient that

$$\lambda \in (\mathfrak{U}^2)' = (\mathfrak{U} : \mathfrak{U}),$$

when $'$ denotes the complementary ideal.

For S_1 and S_2 to be integral in (7) it is necessary and sufficient that also

$$\lambda^{-1} \in (\mathfrak{U} : \mathfrak{U}).$$

The form in n variables of degree n mentioned at the start is connected with the norm form of an ideal (for this see Theorems 3, 4 in [3]). Some information concerning the order to which this ideal belongs can be seen from the greatest divisors of certain sets of elements in the matrix A.

One of the factors S_i in (7) can be chosen unimodular if and only if the ideal class corresponding to A in $\mathbb{Z}[\alpha]$ coincides with the ideal class corresponding to A'. If $\mathbb{Z}[\alpha]$ is the maximal order this is only possible if this ideal class is of order 1 or 2, (see [1], [2]).

REFERENCES

5. ———, Symmetric matrices and their role in the study of general matrices, Linear Algebra and Appl. 5 (1972), 147–159.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91109