INDEX THEORY FOR SINGULAR QUADRATIC FUNCTIONALS IN THE CALCULUS OF VARIATIONS\footnote{The author is indebted to Professor Magnus R. Hestenes for suggesting this problem and for his suggestions in its preparation.}

BY JUNIOR STEIN\footnote{This is to acknowledge the partial support of the author by the U.S. Army Research Office at Durham under Grant DA-31-124-ARO(D)-355 and under Grant DA-ARO-D-31-124-71-G18. Reproduction in whole or in part is permitted for any purpose of the United States Government.}

Communicated by Everett Pitcher, April 13, 1973

1. Introduction. Let P, Q, and R be real-valued $n \times n$ matrix functions defined on the interval $[a, b]$. Assume that P, Q, and R are continuous on $[a, b)$ and that $P(t)$ and $R(t)$ are symmetric matrices for each t in $[a, b)$. We do not assume that Q is symmetric. Also assume that R has the property that its value for any t in $[a, b)$ is positive definite, that is, $v^*R(t)v > 0$ for all n-vectors $v \neq 0$ and for each t in $[a, b)$. Let

$$J(x, y) |_{e_1}^{e_2} = \int_{e_1}^{e_2} \left[\dot{x}^*(t)R(t)\dot{y}(t) + x^*(t)Q(t)\dot{y}(t) + \dot{x}^*(t)Q^*(t)y(t) \right] dt (a \leq e_1 \leq e_2 < b),$$

(1.1)

for x and y in the class A of vector-valued functions described below. Also let

$$J_e(x, y) = J(x, y) |_a^e,$$

$$J_e(x) = J_e(x, x),$$

(1.2)

$$J(x, y) = \liminf_{e \to b} J_e(x, y),$$

(1.3)

$$J(x) = \liminf_{e \to b} J_e(x)$$

for x and y in A. The class A is the set of vector-valued functions $x^*(t) = (x_1(t), \ldots, x_n(t)), a \leq t \leq b$, satisfying

(i) $x(t)$ is continuous on the interval $[a, b]$ and $x(a) = x(b) = 0$,

(ii) $x(t)$ is absolutely continuous and $\dot{x}^*(t)x(t)$ is Lebesgue integrable on each closed subinterval of $[a, b]$. A is a vector space of functions.

J is said to be singular at a point t in $[a, b]$ if the determinant of $R(t)$ is zero or not defined. The point $t = b$ is a singular point in this paper.

2. Preliminaries. What is presented here is part of a quadratic form theory developed and used extensively by Hestenes [3], [4]. Let $Q(x)$
be a quadratic functional defined on a vector space V and let $Q(x, y)$ be its associated symmetric bilinear functional. Two vectors x and y in V are said to be Q-orthogonal whenever $Q(x, y) = 0$. A vector x is said to be Q-orthogonal to a subset S of V whenever $Q(x, y) = 0$ for every y in S. By the Q-orthogonal complement S^Q of the set S in V is meant the set of all vectors x in V that are Q-orthogonal to S. S^Q is a subspace of V. A vector in S that is Q-orthogonal to S is called a Q-null vector of S. The intersection $S \cap S^Q$ is the set of Q-null vectors of S and is usually denoted by S_0. If S is a subspace of V, then so is S_0.

Let S be any subspace in V. We define the nullity $n(S)$ of Q on S or more simply the Q-nullity of S to be the dimension of the subspace $S_0 = S \cap S^Q$ of Q-null vectors in S. We define the signature $s(S)$ of Q on S, the index of Q on S, or the Q-signature of S to be the dimension of a maximal subspace M of S on which $Q < 0$ if this dimension is finite. If no such finite dimensional space exists, we set $s(S) = \infty$. By $Q < 0$ on M we mean that $Q(x) < 0$ for each nonzero x in M. It turns out that the dimension $s(S)$ of M is independent of the choice of M so that the notion of signature is well defined.

Theorem 2.1. If the Q-signature of S is finite where S is a subspace of V, then it is given by one of the following quantities:

(i) the dimension of a maximal subspace M in S on which $Q < 0$;

(ii) the dimension of a maximal subspace M of S on which $Q \leq 0$ and having $M \cap S_0 = 0$;

(iii) the dimension of a minimal subspace M of S such that $Q \geq 0$ on $S \cap M^Q$;

(iv) the least integer k such that there exist k linear functionals L_1, \ldots, L_k on S with the property that $Q(x) \geq 0$ for all x in S satisfying the conditions $L_a(x) = 0$ ($a = 1, 2, \ldots, k$).

3. Results. The main purpose of this paper is to announce the results presented in this section. The details and more results are to appear elsewhere.

The definition of a singular conjugate point is found in Tomastik [7, p. 61] and Chellevold [1, p. 333]. It extends the definition of Morse and Leighton [5, p. 253], who treated the case $n = 1$. For $a \leq e \leq b$ let $A(e) = \{x \in A : x(t) = 0 \text{ for } e \leq t \leq b\}$, where A is defined in §1 of this paper. Define the set B in A to be the union of the sets $A(e)$ for $a < e < b$. Observe that B is actually a subspace of A.

Theorem 3.1. The following conditions are equivalent for some non-negative integer k:

(i) The signature of J given by (1.3) on B is k.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(ii) There is an \(\varepsilon_0 \) in \((a, b)\) such that \(\varepsilon_0 \leq \varepsilon < b \) implies that the signature of \(J \) given by (1.3) on \(A(\varepsilon) \) is \(k \).

(iii) The point \(a \) has exactly a finite number \(k \) of nonsingular conjugate points on \(a < t < b \).

(iv) The point \(b \) has exactly a finite number \(k \) of singular conjugate points on \(a < t < b \).

(v) \(b \) is not conjugate to \(b \).

Theorem 3.1 above contains Theorem 4.4, p. 337, of Chellevold [1].

Let \(U(t) \) be a conjugate system satisfying Euler’s equation

\[
\begin{align*}
\left[R(t) \dot{U}(t) + Q^*(t)U(t) \right] &= \left[Q(t) \dot{U}(t) + P(t)U(t) \right] \\
\text{and the conditions } U(a) &= 0, \quad \dot{U}(a) = I, \quad \det U(t) \neq 0 \text{ for } t \text{ near } b. \quad \text{Let us remark that there are } J’s \text{ which do not possess such conjugate systems.}
\end{align*}
\]

For \(y \in A \) and for \(t \) near \(b \) set

\[
S[y(t), a] = y^*(t)\left[R(t) \dot{U}(t) + Q^*(t)U(t) \right] U^{-1}(t) \quad \text{for each } y \text{ in } D \text{ satisfying } \lim \inf_{t \to b} J(y) < \infty
\]

Let \(D \) be a subspace in \(A \) satisfying \(B \subseteq D \subseteq A \). The condition that \(\lim \inf_{t \to b} S[y(t), a] \geq 0 \) for each \(y \) in \(D \) satisfying \(\lim \inf_{t \to b} J(y) < \infty \) is called the singularity condition relative to \(D \) and belonging to \([a, b]\).

THEOREM 3.2. Assume that \(s(B) \) is finite. Let \(D \) be any subspace with \(B \subseteq D \subseteq A \). Let \(C \) be a subspace in \(B \) maximal relative to having \(J < 0 \). Let \(C^J = \{ x \in A : J(x, y) = 0 \text{ for all } y \in C \} \). The following conditions are equivalent:

(i) If \(x \) is in \(D \cap C^J \), then \(J(x) < \infty \) implies \(\lim \inf_{e \to b} S[x(e), a] \geq 0 \).

(ii) If \(x \) is in \(D \cap C^J \), then \(J(x) \geq 0 \).

(iii) The singularity condition relative to \(D \) holds; that is, if \(x \) is in \(D \), then \(J(x) < \infty \) implies \(\lim \inf_{e \to b} S[x(e), a] \geq 0 \).

THEOREM 3.3. Suppose that \(J(x, y) = \lim \inf_{e \to b} J_e(x, y) \) is bilinear on the subspace \(D \) where \(B \subseteq D \subseteq A \). Assume that \(s(B) \) is finite. Let \(C \) be a subspace in \(B \) maximal relative to having \(J < 0 \). Let \(C^J = \{ x \in A : J(x, y) = 0 \text{ for all } y \in C \} \). Then \(s(D) = s(B) \) if and only if \(x \) in \(C^J \cap D \) implies \(J(x) \geq 0 \).

COROLLARY. If \(J \) is bilinear on the subspace \(D \) with \(B \subseteq D \subseteq A \) and \(s(B) \) is finite, then \(s(D) = s(B) \) if and only if the singularity condition relative to \(D \) and belonging to \([a, b]\) holds.

The next theorem generalizes Theorems 2.3, 4.1, and 5.1 of Tomastik [7].

THEOREM 3.4. There is a subspace \(C \) of finite dimension \(k \) in \(B \) with \(C \) maximal relative to having \(J < 0 \) and \(J \geq 0 \) on \(C^J \cap D \) holds for a subspace
D with $B \subseteq D \subseteq A$ if and only if there are k conjugate points to b in (a, b) and the singularity condition relative to D and belonging to $[a, b]$ is satisfied.

Corollary. There is a subspace C of finite dimension k in B with C maximal relative to having $J < 0$ and $J \geq 0$ on C^1 holds if and only if there are k conjugate points to b in (a, b) and the singularity condition relative to A and belonging to $[a, b]$ is satisfied.

Corollary. For any subspace D with $B \subseteq D \subseteq A$, $J \geq 0$ on D holds if and only if there are no conjugate points to b in (a, b) and the singularity condition relative to D and belonging to $[a, b]$ is satisfied.

Bibliography

Department of Mathematics, The University of Toledo, Toledo, Ohio 43606

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use