Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Asymptotic theorems for sums of independent random variables defined on a tree
HTML articles powered by AMS MathViewer

by A. Joffe and A. R. Moncayo PDF
Bull. Amer. Math. Soc. 79 (1973), 1220-1222
References
  • Theodore E. Harris, The theory of branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 119, Springer-Verlag, Berlin; Prentice Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0163361
  • 2. A. Joffe, Branching processes which perform a random walk, Symposium on Applied Stochastic Processes, Rochester, August 1971.
  • A. Joffe and A. R. Moncayo, On sums of independent random variables defined on a binary tree, Bol. Soc. Mat. Mexicana (2) 18 (1973), 50–54. MR 345167
  • P. E. Ney, The limit distribution of a binary cascade process, J. Math. Anal. Appl. 10 (1965), 30–36. MR 171320, DOI 10.1016/0022-247X(65)90144-7
  • P. E. Ney, The convergence of a random distribution function associated with a branching process, J. Math. Anal. Appl. 12 (1965), 316–327. MR 184287, DOI 10.1016/0022-247X(65)90041-7
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 60B10, 60J80
  • Retrieve articles in all journals with MSC (1970): 60B10, 60J80
Additional Information
  • Journal: Bull. Amer. Math. Soc. 79 (1973), 1220-1222
  • MSC (1970): Primary 60B10, 60J80
  • DOI: https://doi.org/10.1090/S0002-9904-1973-13387-7
  • MathSciNet review: 0331476