Wiener’s classical tauberian theorem has been extended recently to some noncommutative, noncompact groups (see [1], [3], [8] and [10]). Our Theorems 1 and 2 are Wiener type theorems, and interest in them led to the study of contractible groups. It was rather surprising that all contractible Lie-groups are unipotent matrix groups (Theorem 3).

1. Contracting group extensions. A locally compact group N is contractible provided it has enough contractions, i.e., for any compact set $K \subset N$ and any neighborhood W of the identity in N, there is a homeomorphic automorphism $h \in \text{Aut } N$ such that $hK \subset W$. The ordered pairs (K, W) form a directed set with respect to the relation \leq, defined by $(K, W) \leq (K', W')$ if and only if $K \subseteq K'$ and $W \supseteq W'$. For every $n = (K, W)$ choose a contraction h_n with $h_nK \subset W$, then $\{h_n\}$ is a net and for any compact set $K \subset N$ we have $\lim_n h_nK = \{e\}$ (e the neutral element of N).

A locally compact group G is a contracting extension of its normal subgroup N provided the set of restrictions to N of inner automorphisms of G contains enough contractions of N. Thus N must be contractible to admit contracting extensions. For example, if $G' \subseteq \text{Aut } N$ is a locally compact group and contains enough contractions of N, then the semi-direct product $G = G' \ltimes N$ is a contracting extension of N.

If G is an extension of N and $G = G/N$ is the corresponding factor group we will usually denote their elements respectively by x, ξ, \hat{x}, their (left) Haar measures by $dx, d\xi, d\hat{x}$, and their moduli by Δ, δ and Δ'. We suppose that Weil’s formula $dx = d\xi d\hat{x}$ holds.

Let us suppose for a moment that G is separable (i.e. has a countable basis of open sets). Then there exists a measurable cross-section σ of G with respect to N (cf. [9]); i.e., there is a measurable function $\sigma: G' \to G$ with $\sigma(x) \in xN$ and $\sigma(e) = e$. Suppose further that there is a net $\{h_n\}$ of contractions of N as above, such that $\lim_n h_n(x)$ exists for locally almost
all x in G (with respect to dx). Let $\sigma_n(x) = h_n(\sigma(x))$. σ_n is then a measurable function and $\rho(x) = \lim_n \sigma_n(x)$ exists locally almost everywhere on G. Since G is separable it is metrizable, and the net $\{h_n\}$ can be replaced by a sequence. By Egoroff's theorem (cf. [2]) we have the property:

(E) There is a measurable cross-section σ of G with respect to N and a measurable function ρ from G into G; and for each compact set $K \subset G$ and every $\varepsilon > 0$, there is a compact set $K_1 \subset K$ such that $d\sigma(K \setminus K_1) < \varepsilon$ and the restrictions $\sigma_n|_{K_1}$ are continuous and converge uniformly to ρ as functions on K_1.

From now on we will not use the separability of G but we will suppose that the property (E) holds.

Let $L^1(G)$ be the set of all Haar-measurable and absolutely summable complex-valued functions on G. With the usual convolution and involution, $L^1(G)$ is an involutive Banach algebra, and $L^\infty(G)$ is its Banach space dual. G acts weak-* continuously on $L^\infty(G)$ by the usual left and right translations. Subspaces which are closed under these actions are called bi-invariant.

An involutive Banach algebra B is said to have the Wiener property if and only if:

(W) Every proper closed two-sided ideal $I \triangle B$ is contained in the kernel of an irreducible, continuous $*$-representation of B on some Hilbert space.

B is said to be tauberian if and only if it has the property:

(T) Every proper, closed two-sided ideal $I \triangle B$ is contained in a maximal modular two-sided ideal of B.

We will say that a group G is tauberian (or has property (W)) if $L^1(G)$ is tauberian (or satisfies (W)).

Theorem 1. Let G be a contracting extension of N satisfying (E). If G/N satisfies (W) or (T), then so does G.

The proof of this theorem is based on the following lemma and proposition. Since the canonical projection $p : G \to G$ is continuous and open and the function ρ is measurable, the composite map $r = \rho \circ p : G \to G$ is measurable.

Lemma 1. Let G be a contracting extension of N satisfying (E), and let M be a weak-* closed, bi-invariant subspace of $L^\infty(G)$. If $\phi \in M$ is left uniformly continuous on G then $\phi \circ r \in M$.

Proposition 1. Let G and M be as in Lemma 1, and let M_0 be the subset of all $\phi \in M$ which are constant on the cosets with respect to N. Then M_0 is a nontrivial, bi-invariant subspace of M.

Proposition 1' (Dual Version). Let G be as above. If I is a proper,
closed two-sided ideal in \(L^1(G) \), and if \(J \) is the kernel of the morphism \(f \rightarrow f' \) of \(L^1(G) \) onto \(L^1(G) \) (where \(f'(x) = \int_N f(x \xi) d\xi \)), then the closure \(\text{cl}(I + J) \) is a proper, closed, two-sided ideal in \(L^1(G) \); equivalently the closure \(\text{cl}(I) \) of the image of \(I \) under the above morphism is a proper closed two-sided ideal in \(L^1(G) \).

2. Some extensions of contractible algebras. Let \(A \) be an involutive Banach algebra on which a locally compact group \(G \) acts strongly continuously by isometric, involutive, algebra automorphisms \(T_x \), \(x \in G \). The algebra \(A \) is \(T \)-contractible provided that there is a net \(\{x_n\} \) in \(G \) such that

(i) \(\lim_n(T_{x_n}a) \) exists in \(A \) for all \(a, b \in A \), and

(ii) for some \(u \in A \) the net \(\{T_{x_n}u\} \) is an approximating unit for \(A \).

For example, if \(N \) is a contractible group, \(A = \ell^1(N) \) and \(G = \text{Aut} \, N \) is a locally compact group, then \(A \) is \(T \)-contractible if we define \(T \) by

\[
T_x f(x) = \int_N f(xy) \, d\xi \cdot \xi, \quad x \in G, \; f \in A, \; \xi \in N.
\]

In fact \(T_{x_n}f \) converges to the scalar \(\lambda(f) = \int_N f(\xi) \, d\xi \). Since \(A \) contains approximating units, \(A \) can be isometrically imbedded in its adjoint algebra \(A^b \), which is itself an involutive Banach algebra with unit (cf. [7, §3]).

Lemma 2. Let \(A \) be a \(T \)-contractible algebra. The equation

\[
R_a b = \lim_n(T_{x_n}a)b \quad (a, b \in A)
\]

defines an involutive representation \(R \) of \(A \) into its adjoint algebra \(A^b \). The kernel \(j = \ker R \) of \(R \) is \(G \)-invariant, if the \(x_n \) belong to the center of \(G \).

Let \(L = L^1(G, A; T) \) be the generalized \(L^1 \)-algebra with trivial factor system (cf. [7, §1]). As a Banach space, \(L \) is isomorphic to the projective tensor product \(\ell^1(G) \otimes A \). The convolution of \(f, g \in L \) is defined by the Bochner integral

\[
f * g(x) = \int T_x f(xy) \cdot g(y^{-1}) \, dy,
\]

and the involution by \(f^*(x) = (T_{x^{-1}} f)(x) \). \(L \) can be viewed as an extension of the algebra \(A \) by the group \(G \) (cf. [4]).

Suppose \(j = \ker R \) is \(G \)-invariant. Let \(A^* = A/j \) be the involutive Banach algebra quotient of \(A \) by \(j \), and define \(T^* \) on \(A^* \) by \(T_x(a + j) = (T_x a) + j \). The canonical projection \(A \rightarrow A^* \) induces an isometric isomorphism \(L/J \cong L = L(G, A^*; T^*) \) which we denote (par abuse) by \(R^* \) (cf. [7, §5]). The kernel \(J \) of \(R^* \) can be identified with \(\ell^1(G) \otimes j \).

Lemma 3. Let \(A \) be a \(T \)-contractible algebra and assume that \(j = \ker R \) is \(G \)-invariant. Let \(J = \ker R^*_\star \) be as above.

(i) \(\lim_n(T_{x_n}f) * g = 0 \) for all \(f \in J \) and \(g \in L \), where \((T_x f)(y) = T_x(f(y)) \).

(ii) Let \(p_i \) be an approximating unit of \(\ell^1(G) \); if \(R_u = \text{id}_A \) for some \(u \in A \) and \(p_i = T_{x_n}(p_i \otimes u) = p_i \otimes T_{x_n} u \), then \(\{p_i \} \) is an approximating unit of \(L \), where \((i, n) \geq (i', n') \) iff \(i \geq i' \) and \(n \geq n' \).
PROPOSITION 2. Let A be a T-contractible algebra and assume that $j = \ker R$ is G-invariant. If I is a proper, closed, two-sided ideal in $L = L(G, A; T)$ then so is the closure of $I + J$.

By Proposition 2, L will be wienerian (W) or tauberian (T) if L has the respective property.

THEOREM 2. Let A be a T-contractible algebra. Let R be as in Lemma 1, but assume that each R_a is a scalar multiple of the identity operator. Assume that $j = \ker R$ is G-invariant. If G satisfies (W) or (T) then so does $L = L(G, A; T)$.

The method of proof in this paragraph is essentially the same as in [10], whereas the method in §1 is new, and different from the method in [3].

3. Contractible Lie groups and Lie algebras. A few facts about contractible groups in general are collected in

PROPOSITION 3. Let G be a nontrivial contractible group.

(i) G is neither compact nor discrete.

(ii) If G is locally connected, then also globally.

(iii) If G is locally simply connected, then also globally.

(iv) If G has a nontrivial compact subgroup, then it has arbitrarily small ones.

(v) If G has a compact open subset, then G is totally disconnected.

Let K be a nondiscrete, complete field of characteristic 0, and let $\lambda \to |\lambda|$ be a norm (= valuation) of K. Since K is nondiscrete there are nonzero $\lambda_n \in K$ with $\lim_n |\lambda_n| = 0$. If $M \subset K$ is (norm-) bounded then the diameters of the sets $\lambda_n M$ converge to 0. Multiplication by a scalar $\lambda_n \neq 0$, defines an automorphism of K's additive group. The additive group of K is thus contractible if locally compact.

Let \mathcal{G} be a finite-dimensional Lie algebra over K with Lie product $(x, y) \to [x, y]$ and norm $x \to |x|$ for which $|[x, y]| \leq |x| \cdot |y|$. The norm $|h|$ of a Lie homomorphism h of \mathcal{G} is the norm of h as a linear operator of the normed space \mathcal{G}; $|h| = \sup\{|hx|; |x| \leq 1\}$.

A contraction of the Lie algebra \mathcal{G} is a Lie automorphism h with $|h| < 1$. If \mathcal{G} has one contraction h, then it has enough contractions and we call \mathcal{G} contractible: the powers h^n of h map every bounded set eventually into any 0-neighborhood of \mathcal{G}, because their norms $|h^n|$ converge to 0.

PROPOSITION 4. Finite dimensional contractible Lie algebras over K are nilpotent.

EXAMPLES. (1) All freely generated, nilpotent Lie algebras are contractible.
(2) All nilpotent Lie algebras of dimension \(\leq 6 \) are contractible, but some are not freely generated. (This last result is based on the classification of these Lie algebras in [11].)

A unipotent matrix over \(K \) is an (upper) triangular matrix of finite order with coefficients from \(K \) and 1's in the main diagonal. A unipotent group over \(K \) is (up to a global isomorphism) a group of unipotent matrices with matrix multiplication as its group operation, which is complete with respect to a norm topology on the respective matrix ring. The topology of a unipotent group does not depend on the choice of norm because \(K \) (etc.) is completely metrizable, and Baire's theorem applies.

Proposition 5. If \(\mathcal{G} \) is a finite dimensional nilpotent Lie algebra over \(K \) (not necessarily contractible) then \(\mathcal{G} \) can be imbedded into an associative matrix algebra \(A \) over \(K \), such that the power series \(\exp(x) = \sum_{n \geq 0} x^n/n! \), as evaluated in \(A \), reduces to a polynomial for all \(x \in \mathcal{G} \), and such that the global image \(\exp^\mathcal{G} \) of \(\mathcal{G} \) under \(\exp \) is a unipotent group.

The proof of this proposition depends on the theorems of Ado, Lie and Campbell-Hausdorff (cf. e.g. [5]).

Theorem 3. If \(G \) is a contractible Lie group of finite dimension over the field \(R \) of real numbers or the field \(\mathbb{Q}_p \) of \(p \)-adic numbers, then \(G \) is a unipotent group.

In the real case, the proof of Theorem 3 is achieved through Propositions 6 and 7 below, which in turn depend on classical theorems. In the \(p \)-adic case, however, we rely on results from [6], notably the "inversion of the Campbell-Hausdorff formula" [ibid., IV, 3.2.3].

Proposition 6. The Lie algebra \(\mathcal{G} \) of a contractible Lie group \(G \) over \(R \) is contractible and thus nilpotent.

Proposition 7. If \(G \) is a connected and simply connected nilpotent Lie group over \(R \) (not necessarily contractible), then \(G \) is a unipotent group.

The author would like to thank Horst Leptin for his encouragement and advice.

References

DEPARTMENT OF MATHEMATICS, EAST CAROLINA UNIVERSITY, GREENVILLE, NORTH CAROLINA 27834