Dynamical systems, filtrations and entropy
HTML articles powered by AMS MathViewer
References
- R. Abraham and S. Smale, Nongenericity of $\Omega$-stability, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 5–8. MR 0271986
- Rufus Bowen, Topological entropy and axiom $\textrm {A}$, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 23–41. MR 0262459
- Rufus Bowen, Markov partitions for Axiom $\textrm {A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 725–747. MR 277003, DOI 10.2307/2373370
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
- John Franks, Anosov diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 61–93. MR 0271990 6. F. Gantmacher, The theory of matrices, GITTL, Moscow, 1953; English transl., Vol. 2, Chelsea, New York, 1959. MR 16, 438; 21 #6372c.
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173, DOI 10.1007/BFb0092042
- Anthony Manning, Axiom $\textrm {A}$ diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215–220. MR 288786, DOI 10.1112/blms/3.2.215
- Sheldon E. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9–18. MR 339291, DOI 10.1016/0040-9383(74)90034-2
- Zbigniew Nitecki, On semi-stability for diffeomorphisms, Invent. Math. 14 (1971), 83–122. MR 293671, DOI 10.1007/BF01405359
- Z. Nitecki and M. Shub, Filtrations, decompositions, and explosions, Amer. J. Math. 97 (1975), no. 4, 1029–1047. MR 394762, DOI 10.2307/2373686
- J. Palis and S. Smale, Structural stability theorems, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 223–231. MR 0267603
- Charles C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967), 1010–1021. MR 226670, DOI 10.2307/2373414
- Charles Pugh and Michael Shub, The $\Omega$-stability theorem for flows, Invent. Math. 11 (1970), 150–158. MR 287579, DOI 10.1007/BF01404608
- J. W. Robbin, A structural stability theorem, Ann. of Math. (2) 94 (1971), 447–493. MR 287580, DOI 10.2307/1970766
- Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175–199. MR 240824, DOI 10.2307/2373276
- Michael Shub, Structurally stable diffeomorphisms are dense, Bull. Amer. Math. Soc. 78 (1972), 817–818. MR 307278, DOI 10.1090/S0002-9904-1972-13047-7
- M. Shub and S. Smale, Beyond hyperbolicity, Ann. of Math. (2) 96 (1972), 587–591. MR 312001, DOI 10.2307/1970826
- M. Shub and D. Sullivan, Homology theory and dynamical systems, Topology 14 (1975), 109–132. MR 400306, DOI 10.1016/0040-9383(75)90022-1
- S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399. MR 153022, DOI 10.2307/2372978
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- S. Smale, The $\Omega$-stability theorem, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 289–297. MR 0271971
- Steve Smale, Stability and isotopy in discrete dynamical systems, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 527–530. MR 0339222
- C. T. C. Wall, Classification of $(n-1)$-connected $2n$-manifolds, Ann. of Math. (2) 75 (1962), 163–189. MR 145540, DOI 10.2307/1970425
Additional Information
- Journal: Bull. Amer. Math. Soc. 80 (1974), 27-41
- MSC (1970): Primary 58F10, 58F20; Secondary 57D65
- DOI: https://doi.org/10.1090/S0002-9904-1974-13344-6
- MathSciNet review: 0334284