COMPLETION AND EMBEDDING BETWEEN PSEUDO
(v, k, λ)-DESIGNS AND (v, k, λ)-DESIGNS

BY OSVALDO MARRERO

Communicated by Dock Rim, May 29, 1973

ABSTRACT. Each of four arithmetical conditions on the parameters v, k, and λ of a given primary pseudo (v, k, λ)-design is necessary and sufficient to ensure completion or embedding between the given design and some (v', k', λ')-design.

Let \(X = \{x_1, \ldots, x_v\} \), and let \(X_1, \ldots, X_v \) be subsets of \(X \). The subsets \(X_1, \ldots, X_v \) are said to form a \((v, k, \lambda)\)-design if

1. each \(X_j \) (\(1 \leq j \leq v \)) has \(k \) elements;
2. any two distinct \(X_i, X_j \) (\(1 \leq i, j \leq v \)) intersect in \(\lambda \) elements; and
3. \(0 \leq \lambda < k < v - 1 \).

Such a design is completely determined by its incidence matrix; this is the \((0, 1)\)-matrix \(A = [a_{ij}] \) defined by taking \(a_{ij} = 1 \) if \(x_j \in X_i \) and \(a_{ij} = 0 \) if \(x_j \notin X_i \). More information about these combinatorial designs is available, for example, in [2] and [5].

Let \(Y = \{y_1, \ldots, y_v\} \), and let \(Y_1, \ldots, Y_{v-1} \) be subsets of \(Y \). The subsets \(Y_1, \ldots, Y_{v-1} \) are said to form a pseudo \((v, k, \lambda)\)-design if

1. each \(Y_j \) (\(1 \leq j \leq v-1 \)) has \(k \) elements;
2. any two distinct \(Y_i, Y_j \) (\(1 \leq i, j \leq v-1 \)) intersect in \(\lambda \) elements; and
3. \(0 < \lambda < k < v - 1 \).

The incidence matrix of a pseudo \((v, k, \lambda)\)-design is defined in the same manner as the incidence matrix of a \((v, k, \lambda)\)-design.

The consideration of pseudo \((v, k, \lambda)\)-designs was suggested during the course of study of “modular hadamard matrices” [3], [4]. Related work has been published by Bridges [1] and Woodall [6].

A pseudo \((v, k, \lambda)\)-design is “almost” (its incidence matrix lacks one row) a \((v, k, \lambda)\)-design; this suggests the consideration of “completion and embedding” between these two combinatorial designs. Let \(A \) be the incidence matrix of a pseudo \((v, k, \lambda)\)-design. Then it might be possible to

Key words and phrases. Block designs, \((v, k, \lambda)\)-designs, pseudo \((v, k, \lambda)\)-designs, completion and embedding of block designs.

Copyright © American Mathematical Society 1974

103
"complete" the \(v - 1 \) rows of \(A \) by adjoining one additional row to \(A \), and possibly performing some operations on the rows or columns of \(A \), so that the incidence matrix of some \((v, k', \lambda')\)-design is obtained; also, it might be possible that the incidence matrix of some \((v-1, k', \lambda')\)-design is "embedded" in \(A \). This paper presents a theorem and a conjecture dealing with such completion and embedding. No proof of the theorem below is given in this paper. A more comprehensive paper dealing with pseudo \((v, k, \lambda)\)-designs is being planned by this author.

When \(k=2\lambda \), the existence of a pseudo \((v, k, \lambda)\)-design implies and is implied by the existence of some \((v', k', \lambda')\)-design; and, if the parameters of a given pseudo \((v, k, \lambda)\)-design satisfy \(v\lambda=k^2 \), then they must satisfy \(k=2\lambda \) [3]. A pseudo \((v, k, \lambda)\)-design is called primary or nonprimary according to whether its parameters satisfy \(v\lambda\neq k^2 \) or \(v\lambda=k^2 \), respectively. Thus, it is the existence of primary pseudo \((v, k, \lambda)\)-designs which remains unresolved.

The incidence matrix of a pseudo \((v, k, \lambda)\)-design can be obtained from the incidence matrix \(A \) of a given \((v', k', \lambda')\)-design by any one of the following four simple techniques:

1. a column of \(+1\)'s is adjoined to \(A \);
2. a column of \(0\)'s is adjoined to \(A \);
3. a row is discarded from \(A \); or
4. a row is discarded from \(A \) and then the \(k' \) columns of \(A \) which had a \(+1\) in the discarded row are complemented (\(0\)'s and \(+1\)'s are interchanged in these columns).

These four are the only known techniques for the construction of pseudo \((v, k, \lambda)\)-designs. The initial observation which led to the theorem below is that there is a simple arithmetical condition on the parameters \(v, k, \) and \(\lambda \) which is necessary for the incidence matrix of a given primary pseudo \((v, k, \lambda)\)-design to be obtained from the incidence matrix of some \((v', k', \lambda')\)-design by one of the aforementioned techniques; it can be shown that each one of these conditions is also sufficient, thus answering the completion and embedding problem under consideration in these four cases.

Theorem. The incidence matrix of a given primary pseudo \((v, k, \lambda)\)-design can be obtained from the incidence matrix of some \((v', k', \lambda')\)-design by the \(i \)-th \((1 \leq i \leq 4)\) technique above if and only if the parameters \(v, k, \) and \(\lambda \) satisfy the respective \(i \)-th condition below:

1. \((k-1)(k-2)=(\lambda-1)(v-2)\);
2. \(k(k-1)=\lambda(v-2)\);
3. \(k(k-1)=\lambda(v-1)\); or
4. \(k=2\lambda\).
A primary pseudo \((v, k, \lambda)\)-design is said to be of type \(i\) \((1 \leq i \leq 4)\) if its parameters satisfy the \(i\)th equation in the statement of the above theorem. There are examples of pseudo \((v, k, \lambda)\)-designs of each of these four types that are not of any of the other three types. It is possible for a pseudo \((v, k, \lambda)\)-design to be of more than one type.

The condition that the parameters \(v, k, \lambda\) satisfy the \(i\)th \((1 \leq i \leq 4)\) equation in the statement of the theorem above is not sufficient to ensure the existence of a pseudo \((v, k, \lambda)\)-design, since none of these conditions is sufficient to ensure the existence of a \((v', k', \lambda')\)-design with the appropriate parameters \(v', k', \lambda'\).

This author has conjectured that given a primary pseudo \((v, k, \lambda)\)-design, then completion or embedding between the given design and some \((v', k', \lambda')\)-design must always be possible. The precise statement is:

Conjecture. The parameters of a given primary pseudo \((v, k, \lambda)\)-design must satisfy at least one of the equations in the statement of the above theorem.

It is known that the above conjecture is valid whenever \(\lambda = 1\).

References

Department of Mathematics, Francis Marion College, Florence, South Carolina 29501