QUASI-KAN EXTENSIONS FOR 2-CATEGORIES

BY JOHN W. GRAY

Communicated by Saunders Mac Lane, May 21, 1973

1. Introduction. Let \(\text{Cat} \) denote the category of small categories and functors. \(\text{Cat} \) is a Cartesian closed category, [2] and the prefix \(2- \) will denote categories and functors enriched in \(\text{Cat} \). \(2-\text{Cat} \) denotes the category of small 2-categories and 2-functors. It is also Cartesian closed, but there is another notion of a transformation between 2-functors \(F \) and \(G \) which has interesting properties; namely a quasi-natural transformation from \(F \) to \(G \) is a family of morphisms \(\{ \varphi_A : F(A) \rightarrow G(A) \} \) together with a family of 2-cells \(\{ \varphi_f : G(f) \varphi_A \rightarrow \varphi_B F(f) \} \) as illustrated

\[
\begin{array}{ccc}
F(A) & \xrightarrow{F(f)} & F(B) \\
\downarrow \varphi_A & & \downarrow \varphi_B \\
G(A) & \xrightarrow{G(f)} & G(B)
\end{array}
\]

satisfying obvious compatibility conditions. (The case where the \(\varphi_f \)'s are isomorphisms has been considered in [7] and [8], but we make no such restriction.) Given this notion of "natural transformation", it is reasonable and useful to inquire about the corresponding notion of "quasi-limit" or, more generally, "quasi-Kan extension".

Such a Kan extension was used in an essential way for the proof of the main result in [4, §9], but until now no justification has been given for calling the construction used there a "Kan extension". In the usual case, if \(S : \mathcal{A} \rightarrow \mathcal{B} \) is an ordinary functor and \(\mathcal{X} \) is a cocomplete category, then under appropriate hypotheses the functor

\(\mathcal{X}^S : \mathcal{X}^B \rightarrow \mathcal{X}^A \)

is right adjoint to the (left) Kan extension \(\Sigma S : \mathcal{X}^A \rightarrow \mathcal{X}^B \). \(\Sigma S \) can be constructed as follows: replace \(S \) by its associated factorization through an opfibration

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{Q_S} & (S, \mathcal{B}) \\
\downarrow P & & \downarrow P_S \\
\mathcal{A} & \rightarrow & \mathcal{B}
\end{array}
\]
where $S=P\circ Q$ and P is left inverse, right adjoint to Q (see [3, p. 55]). One shows that for the opfibration P, the Kan extension ΣP is given by "integration (i.e., colimit) along the fibres" and then that $\Sigma S=(\Sigma P)\times^{\mathcal{E}}$.

In the 2-category case, 2-functors and quasi-natural transformations are the objects and morphisms of a 2-category $\text{Fun}(\mathcal{A}, \mathcal{B})$ which is the internal hom object for a nonsymmetrical, monoidal closed structure on $2\text{-}\text{Cat}$, denoted by $2\text{-}\text{Cat}_\otimes$. (Cf. [4, p. 280] and [6].) If $S: \mathcal{A} \to \mathcal{B}$ is a fixed 2-functor, then for any \mathcal{X}, there is an induced functor

$$S^* = \text{Fun}(S, \mathcal{X}): \text{Fun}(\mathcal{B}, \mathcal{X}) \to \text{Fun}(\mathcal{A}, \mathcal{X})$$

and we can ask for a left quasi-adjoint ΣS to S^* in some suitable sense of quasi-adjointness. (The case $\mathcal{B}=1$ yields quasi-colimits.) In this paper we describe how to modify each step in the procedure described above to fit the situation of 2-categories. It will be seen that when S is a suitable kind of quasi-opfibration, one obtains an ordinary \mathcal{E}-enriched adjoint ($=\text{Cat}$-adjoint). This includes the case of quasi-limits. However, in general one gets a strict quasi-adjoint. This notion forces itself upon one when one studies $2\text{-}\text{Cat}_\otimes$ seriously, since it arises in many different contexts. (In particular, the comprehension scheme in [4] is a strict quasi-adjoint, as are all the constructions mentioned in this paper.) Detailed proofs will be published in [6].

2. Definitions. Besides the 2-comma category $[S_1, S_2]$ defined as in [4, p. 279], for a pair of 2-functors $S_1: \mathcal{A} \to \mathcal{B}$, there are 3-comma categories $[S_1, S_2]_3$ and $[S_1, S_2]_\otimes$ defined for 3-functors (resp. 2-category-functors) S_1 and S_2 between 3-categories (resp. 2-category-categories) with the same codomain. 0-cells and 1-cells are defined as in $[S_1, S_2]$, 2-cells are a pair of 2-cells as in $[S_1, S_2]$ plus a 3-cell expressing the lack of commutativity, and 3-cells are pairs satisfying the obvious equation. Details will be given in [6].

Let $F: \mathcal{A} \to \mathcal{B}$ and $U: \mathcal{B} \to \mathcal{A}$ be 2-functors between 2-categories. A pair of quasi-natural transformations, $\varepsilon: FU \to \mathcal{B}$ and $\eta: \mathcal{A} \to UF$ is called a quasi-adjunction between F and U if it satisfies the usual equations. It is called strict if

$$(U\varepsilon F)(\eta_\eta) = 1_\eta, \quad \varepsilon_\varepsilon(F\eta U) = 1_\varepsilon.$$

Here, for instance, since $\eta_\mathcal{A}: \mathcal{A} \to UF\mathcal{A}$ is an arrow, ε assigns to it a 2-cell from $(UF\eta_\mathcal{A})\eta_\mathcal{A}$ to $(\eta UF\mathcal{A})\eta_\mathcal{A}$. This defines the modification (2-cell in $\text{Fun}(\mathcal{A}, \mathcal{A})$) denoted by η_ε. Similarly, 1_η is the identity modification of η.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
3. Cartesian quasi-limits and colimits. In the special case of induced functors S^* in which $\mathcal{B} = \mathbf{1}$, one obtains the constant embedding
\[\Delta_X : \mathcal{X} \rightarrow \text{Fun}(\mathcal{A}, \mathcal{X}). \]
The right (resp. left) \mathcal{C}-adjoint to Δ_X is called the Cartesian quasi-limit (resp., colimit) of type \mathcal{A} in \mathcal{X} and is denoted by
\[Q_{\mathcal{C}} \quad \Delta_{\mathcal{X}} \quad \Delta_{\mathcal{C}} \quad Q_{\mathcal{A}} \]
\mathcal{X} is called Cartesian quasi-complete (resp., cocomplete) if $Q_{\mathcal{C}}$ (resp., $Q_{\mathcal{A}}$) exists in \mathcal{X} for all small 2-categories \mathcal{A}.

Theorem 1. $\mathcal{C}al$ is Cartesian quasi-complete and cocomplete.

Proof. We describe the construction here.

Let $H : \mathcal{A} \rightarrow \mathcal{C}al$ be a 2-functor. H determines an opfibration $P : \mathcal{E}_H \rightarrow \mathcal{A}$ (see [4, pp. 248, 285, 289]) where \mathcal{E}_H is a 2-category. In the special case that $H : \mathcal{A} \rightarrow \mathcal{E}_\mathcal{A}$ with \mathcal{A} an ordinary category, then $\lim H = \pi_0(\mathcal{E}_H)$ and $\lim H = \Gamma(\mathcal{E}_H)$ where π_0 assigns to a category its set of connected components, and Γ is the set of sections of P. In the general case one shows that $Q_H = L\pi_0(\mathcal{E}_H)$ and $Q_H = \Gamma(\mathcal{E}_H)$ where $L\pi_0 : 2-\mathcal{C}al - \rightarrow \mathcal{C}al$ is “local π_0”, i.e., it turns a 2-category \mathcal{C} into a category $L\pi_0(\mathcal{C})$ by replacing each hom-category $\mathcal{C}(X, Y)$ by the set $\pi_0(\mathcal{C})(X, Y)$. (Note that this differs from the assertion in [4, p. 289].) Similarly, Γ denotes the category of sections of P; i.e., 2-functors $G : \mathcal{A} \rightarrow \mathcal{E}_H$ such that $PG = 1$ and natural transformations ψ such that $P\psi = 1$.

In [5] it is asserted, and it will be proved elsewhere, that this result holds for strongly representable (resp., corepresentable) 2-categories. These are essentially 2-categories which are complete (resp., cocomplete) in the sense of closed categories.

We list here a number of examples of Cartesian quasi-limits and colimits in $\mathcal{C}al$. These examples serve to define the corresponding concepts in other 2-categories.

(i) $\mathcal{A} = 2$ (the category with two objects and a single nonidentity morphism). $H : 2 \rightarrow \mathcal{C}al$ looks like a functor $f : A \rightarrow B$ between small categories and $Q_H = (f, B)$, the universal opfibration associated to f, while $Q_H = (A, f)$, the universal cofibration associated to f (see [3, §5]).

(ii) (cf. Street [10]) Let Δ^{op} denote the 2-category with a single object \ast, with $\text{Hom}(\ast, \ast)$ the dual of the category of finite ordinals. A 2-functor $H : \Delta^{op} \rightarrow \mathcal{C}al$ is the same as a small category \mathcal{A} equipped with a cotriple G, and Q_H is the co-Kleisli category of the cotriple. Let $\text{op}(\Delta^{op})$ be the weak dual. Then $H : \text{op}(\Delta^{op}) \rightarrow \mathcal{C}al$ is a small category equipped with a triple and Q_H is the category of Eilenberg-Moore algebras. Appropriate duals give the other two possibilities.
If the possibilities are extended by allowing nonfull subcategories of $\text{Fun}(\mathcal{A}, \mathcal{B})$ determined by imposing conditions on the 2-cells φ_i for certain f's, then Cat still admits such quasi-limits and colimits. As particular examples, one obtains comma categories [3] and subequalizers (Lambek [9]) as well as the result that the closure of $\mathcal{P} e l s \subset \text{Cat}$ under such quasi-colimits is all of Cat.

The main result about Q needed for quasi-Kan extensions is the following.

Theorem 2. $Q: [\mathcal{E}, \text{Cat}_\otimes] \to \mathcal{X}$ is a 2-Cat_\otimes-functor which is the left 2-Cat_\otimes-adjoint to N.

Here N is the functor in the other direction which is the name functor; e.g., on an object $X \in \mathcal{X}$, $N(X) = X: \mathcal{E} \to \mathcal{X}$, etc., and s means small. The main (and considerable) difficulty is to show that Q is defined here.

4. Quasi-fibrations.

Among the various possible definitions the following is the one needed here. Let $\text{Fun}(\mathcal{B})^{\text{op}} = \text{Fun}(2, \mathcal{B})^{\text{op}}$. A 2-functor $P: \mathcal{E} \to \mathcal{B}$ is called a Cartesian quasi-opfibration if there exists a 2-functor L as illustrated

```
\begin{array}{ccc}
\text{Fun}(\mathcal{E}) & \xleftarrow{\delta_0} & [P, \mathcal{B}] \\
\downarrow{L} & & \downarrow{P} \\
\text{Fun}(\mathcal{P}) & \xleftarrow{\delta_0} & \text{Fun}(\mathcal{B})
\end{array}
```

having R as a right Cat-adjoint and $RL = \text{id}$. Here the square is a pullback and δ_0, $\text{Fun}(P)$ and R are the obvious induced 2 functors. A choice of L is called a cleavage. If L is chosen so that $L(\text{id}) = \text{id}$ and

$$L(f \ast E, g) \circ L(E, f) = L(E, gf)$$

then P together with L is called a split-normal Cartesian quasi-opfibration. The 2-category of such together with cleavage preserving 2-functors and Cat natural transformations over \mathcal{B} is denoted by Cart q-Split(\mathcal{B})$_0$.

Theorem 3. The inclusion

$$\text{Cart } q\text{-Split}(\mathcal{B})_0 \to [\text{op}2 \text{Cat}, \mathcal{B}]$$

has a strict left quasi-adjoint Φ.

Here Φ on an object $S: \mathcal{A} \to \mathcal{B}$ is the projection $P_S: [S, \mathcal{B}] \to \mathcal{B}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
THEOREM 4. The associated opfibration has the property that there is a factorization of S,

$$
\mathcal{A} \xrightarrow{Q_S} [S, \mathcal{B}] \xrightarrow{P_S} \mathcal{B}
$$

in which $P_SQ_S = S$ and P is left inverse, strict quasi-right adjoint to Q_S.

REMARK. P_S is also an ordinary Cat-enriched opfibration and P is a Cat-enriched fibration.

THEOREM 5. Let $(P: \mathcal{E} \to \mathcal{B}, L)$ be a split normal Cartesian quasi-opfibration with small fibres. Then there is a 2-Cat_\otimes-imbedding $J: \mathcal{B} \to [2\text{-Cat}_\otimes, \mathcal{E}]_\otimes$.

5. Quasi-Kan extensions. For quasi-opfibrations, one has the following astonishing result.

THEOREM 6. If $P: \mathcal{E} \to \mathcal{B}$ is a split normal Cartesian quasi-opfibration with small fibres, and \mathcal{X} is Cartesian quasi-cocomplete then $P^*: \text{Fun}(\mathcal{B}, \mathcal{X}) \to \text{Fun}(\mathcal{E}, \mathcal{X})$ has a left Cat-adjoint, Σ_0P given by "integration along the fibres."

This means that if $G: \mathcal{E} \to \mathcal{X}$ is a 2-functor, then $\Sigma_0P(G)$ is the composition

$$
\mathcal{B} \xrightarrow{J} [2\text{-Cat}_\otimes, \mathcal{E}]_\otimes \xrightarrow{G^*} [2\text{-Cat}_\otimes, \mathcal{X}]_\otimes \xrightarrow{Q} \mathcal{X}
$$

where G^* denotes composition with G.

Finally, we get the desired generalization of Kan extensions.

THEOREM 7. Let $S: \mathcal{A} \to \mathcal{B}$ be a 2-functor between small 2-categories and let \mathcal{X} be Cartesian quasi-cocomplete. Let $\Sigma_0S = (\Sigma_0P_S)P^*$ where P_S and P are as in Theorem 4. Then $\text{op}(\Sigma_0S)$ is a strict quasi-left-adjoint to $\text{op}(S^*)$: $\text{op}\text{-Fun}(\mathcal{B}, \mathcal{X}) \to \text{op}\text{-Fun}(\mathcal{A}, \mathcal{X})$.

The claim in [4, §9], about Σ_0S is incorrect and the adjunction is in the sense stated here. Part of the reason for the failure of Σ_0S to be a Cat-adjoint in general is that P is transversal to the fibres in $[S, \mathcal{B}]$ which has the effect that Σ_0S applied to a quasi-natural transformation yields a Cat-natural transformation. An example of Σ_0S is given in [4]. Others will be given elsewhere in the subject of 2-theories.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, ILLINOIS 61801