A note on Anosov diffeomorphisms
HTML articles powered by AMS MathViewer
- by Robert J. Sacker and George R. Sell PDF
- Bull. Amer. Math. Soc. 80 (1974), 278-280
References
- D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Dokl. Akad. Nauk SSSR 145 (1962), 707–709 (Russian). MR 0143156
- Ricardo Mañé, Persistent manifolds are normally hyperbolic, Trans. Amer. Math. Soc. 246 (1978), 261–283. MR 515539, DOI 10.1090/S0002-9947-1978-0515539-0
- Zbigniew Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971. MR 0649788
- Robert J. Sacker and George R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I, J. Differential Equations 15 (1974), 429–458. MR 341458, DOI 10.1016/0022-0396(74)90067-9
- Robert J. Sacker and George R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I, J. Differential Equations 15 (1974), 429–458. MR 341458, DOI 10.1016/0022-0396(74)90067-9
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Peter Walters, Anosov diffeomorphisms are topologically stable, Topology 9 (1970), 71–78. MR 254862, DOI 10.1016/0040-9383(70)90051-0
Additional Information
- Journal: Bull. Amer. Math. Soc. 80 (1974), 278-280
- MSC (1970): Primary 58F15, 34C35
- DOI: https://doi.org/10.1090/S0002-9904-1974-13460-9
- MathSciNet review: 0331432