Actions of reductive groups on regular rings and Cohen-Macaulay rings
HTML articles powered by AMS MathViewer
- by Melvin Hochster and Joel L. Roberts PDF
- Bull. Amer. Math. Soc. 80 (1974), 281-284
References
- Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI 10.2307/1970791
- M. Hochster, Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay, J. Algebra 25 (1973), 40–57. MR 314833, DOI 10.1016/0021-8693(73)90074-4
- M. Hochster, Grade-sensitive modules and perfect modules, Proc. London Math. Soc. (3) 29 (1974), 55–76. MR 374118, DOI 10.1112/plms/s3-29.1.55
- M. Hochster and John A. Eagon, A class of perfect determinantal ideals, Bull. Amer. Math. Soc. 76 (1970), 1026–1029. MR 266912, DOI 10.1090/S0002-9904-1970-12543-5
- M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI 10.2307/2373744
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772–784. MR 252389, DOI 10.2307/2373351 9. R. E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Thesis, University of Minnesota, Minneapolis, Minn., 1971.
- Dan Laksov, The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Math. 129 (1972), no. 1-2, 1–9. MR 382297, DOI 10.1007/BF02392211
- C. Musili, Postulation formula for Schubert varieties, J. Indian Math. Soc. (N.S.) 36 (1972), 143–171. MR 330177
- Masayoshi Nagata, Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ. 1 (1961/62), 87–99. MR 142667, DOI 10.1215/kjm/1250525107
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
Additional Information
- Journal: Bull. Amer. Math. Soc. 80 (1974), 281-284
- MSC (1970): Primary 14M05, 20G05, 14B15, 13D05; Secondary 13H05, 13H10
- DOI: https://doi.org/10.1090/S0002-9904-1974-13462-2
- MathSciNet review: 0330157