Pseudo-inverses of operators
HTML articles powered by AMS MathViewer
- by J. J. Koliha PDF
- Bull. Amer. Math. Soc. 80 (1974), 325-328
References
- Frederick J. Beutler, The operator theory of the pseudo-inverse. I. Bounded operators, J. Math. Anal. Appl. 10 (1965), 451–470. MR 179618, DOI 10.1016/0022-247X(65)90108-3
- F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566–570. MR 190744, DOI 10.1090/S0002-9904-1966-11543-4
- Frank Gilfeather, Asymptotic convergence of operators in Hilbert space, Proc. Amer. Math. Soc. 22 (1969), 69–76. MR 247508, DOI 10.1090/S0002-9939-1969-0247508-2
- Frank Gilfeather, The structure and asymptotic behavior of polynomially compact operators, Proc. Amer. Math. Soc. 25 (1970), 127–134. MR 257791, DOI 10.1090/S0002-9939-1970-0257791-3
- J. J. Koliha, Convergent and stable operators and their generalization, J. Math. Anal. Appl. 43 (1973), 778–794. MR 324447, DOI 10.1016/0022-247X(73)90292-8
- J. J. Koliha, Ergodic theory and averaging iterations, Canadian J. Math. 25 (1973), 14–23. MR 341136, DOI 10.4153/CJM-1973-002-9
- M. Z. Nashed, Generalized inverses, normal solvability, and iteration for singular operator equations, Nonlinear Functional Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison, Wis., 1970) Academic Press, New York, 1971, pp. 311–359. MR 0275246
- David W. Showalter and Adi Ben-Israel, Representation and computation of the generalized inverse of a bounded linear operator between Hilbert spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 48 (1970), 184–194 (English, with Italian summary). MR 273432
Additional Information
- Journal: Bull. Amer. Math. Soc. 80 (1974), 325-328
- MSC (1970): Primary 47A99, 47A50; Secondary 47A10, 65J05
- DOI: https://doi.org/10.1090/S0002-9904-1974-13485-3
- MathSciNet review: 0336378