GENERALIZED SUPER-PARABOLIC FUNCTIONS

BY NEIL EKLUND

Communicated by Alberto Calderón, September 22, 1973

The purpose of this note is to announce results which generalize potential theory (superharmonic functions) to a broad class of parabolic operators. Many of the properties of superharmonic functions carry over to functions in this new class. Let \(Q = \Omega \times (0, T) \) where \(\Omega \subset \mathbb{R}^n \) is a bounded domain and \(T > 0 \) is a scalar. All functions will be defined on \(\overline{Q} \) and will be written as functions of \((x, t) \) with \(x \in \bar{\Omega} \) and \(t \in [0, T] \).

For \((x, t) \in \overline{Q} \) assume

(a) \(a_{ij}(x, t) \) is a bounded, measurable function for \(i, j = 1, 2, \cdots, n \) and assume there is a constant \(\lambda > 0 \) such that \(\sum a_{ij}(x, t)z_iz_j \geq \lambda |z|^2 \) for all \(z \in \mathbb{R}^n \) and almost all \((x, t) \in Q \).

(b) \(c(x, t) \in L^q[0, T; L^p(\Omega)] \) for \(n/2p + 1/q < 1, 1 < p, q < \infty \).

(c) \(b_j(x, t), d_j(x, t) \in L^q[0, T; L^p(\Omega)] \) for \(j = 1, \cdots, n \) and \(n/2p + 1/q < \frac{1}{2}, 2 < p, q < \infty \).

The parabolic operator under consideration is defined by

\[
Lu = u_t - \sum a_{ij}(x, t)u_{x_i} - \sum b_j(x, t)u_x - c(x, t)u
\]

where \(u_x = \frac{\partial u}{\partial x_j} \) and an index \(i \) or \(j \) is summed over \(1 \leq i, j \leq n \) whenever it is repeated in a product.

Definition 1. \(u(x, t) \) is a weak solution of \(Lu = 0 \) in \(Q \) if \(u \) is locally in \(L^2[0, T; H^{1,2}(\Omega)] \) and \(\int_Q \left[a_{ij}u_{x_i}\phi_{x_j} + b_ju_x\phi_x - c(u_x)\phi - cu\phi - u\phi_t \right] dx \, dt = 0 \) for all \(\phi \in C^1(\overline{Q}) \).

Let \(\partial_p Q = \{ \partial_\Omega \times [0, T] \} \cup \{ \Omega \times (0) \} \) denote the parabolic boundary of \(Q \). Due to the number of definitions and results, they are stated below with no proofs.

Theorem 1. Let \(f \in C(\partial_p Q) \) and let \(u = u(x, t) \) be the weak solution of the boundary value problem

\[
Lu = 0 \quad \text{on} \quad Q, \quad u = f \quad \text{on} \quad \partial_p Q.
\]

Then, to each \((x, t) \in Q \), there corresponds a nonnegative Borel measure

AMS (MOS) subject classifications (1970). Primary 35K20, 31C05; Secondary 35D05.
Key words and phrases. Superharmonic functions, parabolic operators.
\[
\mu_{(x, t)} \text{ on } \partial_x Q \text{ such that}
\]

\[
u(x, t) = \int_{\partial x Q} f \, d\mu_{(x, t)} \text{ on } Q.
\]

In the future, write \(L(f; (x, t), Q) = \int_{x \in Q} f \, d\mu_{(x, t)} \).

Definition 2. \(u \in S_Q \) if and only if \(u \in L^a[0, T; H^{1,2}(\Omega)] \) and for all \(\phi \in C_0^1(\Omega^3) \) with \(\phi \geq 0 \),

\[
\int_Q \left[a_{ij} u_{,j} \phi_{,i} + d_{ij} \phi_{,j} u - b_{ij} u_{,j} \phi - cu\phi - u\phi_i \right] \, dx \, dt \geq 0.
\]

Definition 3. \(R_a(x_0, t_0) = \{(x, t); |x_i - x_{0i}| < a, t_0 - a^2 < t \leq t_0\} \) is called a standard rectangle based at \((x_0, t_0)\).

Definition 4. \(u \in l(Q) \) if and only if

(i) \(u \geq + \infty \) on \(Q \),

(ii) \(u > - \infty \) on \(Q \), and

(iii) \(u \) is lower semicontinuous on \(Q \).

Definition 5. The extended real valued Borel measurable function \(u \) defined on an open set \(D \) is

(a) super-mean-valued at \(z \in D \) if \(L(u; z, R_\delta) \) is defined and \(u(z) \geq L(u; z, R_\delta) \) for almost all \(\delta \) with \(R_\delta(z) \subset D \);

(b) super-mean-valued on \(D \) if it is super-mean-valued at each \(z \in D \);

(c) locally super-mean-valued at \(z \in D \) if there is a \(\delta(z) > 0 \) such that \(R_{\delta(z)}(z) \subset D \) and \(u(z) \geq L(u; z, R_\delta) \) for all \(\delta < \delta(z) \);

(d) locally super-mean-valued on \(D \) if it is locally super-mean-valued at each \(z \in D \).

Definition 6. \(S'_Q = \{ u \in l(Q); u \) is super-mean-valued on \(Q \} \). \(S''_Q = \{ u \in l(Q); \) for any cylinder \(W = C \times (a, b) \) with \(W \subset Q \), and any \(v \) with \(v \in C(W), Lv = 0 \) on \(W \), and \(u \geq v \) on \(\partial_p W \), it follows that \(u \geq v \) on \(W \} \). \(S'''_Q = \{ u \in l(Q); u \) is locally super-mean-valued on \(D \}. \)

Theorem 2. \(u \in S_Q \) with \(u \geq 0 \) on \(\partial_p Q \) implies \(u \geq 0 \) on \(Q \).

Corollary. If \(c + \{d_{ij}\}_{ij} \leq 0 \) weakly on \(Q \), then the weak solution \(u \) of \(Lu = 0 \) in \(Q \), \(u = 1 \) on \(\partial_p Q \) satisfies \(0 \leq u(x, t) \leq 1 \) on \(Q \).

From now on assume \(c + \{d_{ij}\}_{ij} \leq 0 \) weakly on \(Q \).

Theorem 3. Let \(u \in S''_Q \). If, for some \((x_0, t_0) \in Q \), \(u(x_0, t_0) = \inf_Q u \leq 0 \), then \(u(x, t) \equiv u(x_0, t_0) \) on \(\Omega \times (0, t_0) \).

Theorem 4. \(S_Q \subset S'_Q = S''_Q = S'''_Q \).

Theorem 5. Let \(F(x) \) be convex on \(\mathbb{R}^n \) with \(F(0) \leq 0 \). If \(Lu = 0 \) on \(Q \), then \(-F(u) \in S'_Q \).

Theorem 6. Let \(F(x) \) be nondecreasing and convex on \(\mathbb{R}^n \) with \(F(0) \leq 0 \). If \(-u \in S'_Q \), then \(-F(u) \in S'_Q \).
1974] GENERALIZED SUPER-PARABOLIC FUNCTIONS 345

THEOREM 7. If \(u \in S'_Q \), and if \(u(x, t) \geq 0 \), then there exist \(t_0, t_1 \) with \(0 \leq t_0 \leq t_1 \leq T \) such that

\[
\begin{align*}
 u(x, t) &\equiv 0 & &\text{on } \Omega \times (0, t_0), \\
 0 < u(x, t) &< +\infty & &\text{on } \Omega \times (t_0, t_1), \\
 u(x, t) &\equiv +\infty & &\text{on } \Omega \times (t_1, T).
\end{align*}
\]

THEOREM 8. If \(u, v \in S'_Q \) and \(c > 0 \), then (i) \(cu \in S'_Q \), (ii) \(u + v \in S'_Q \), (iii) \(\inf(u, v) \in S'_Q \).

THEOREM 9. \(u, -u \in S'_Q \) implies \(Lu = 0 \) weakly on \(Q \).

THEOREM 10. Let \(u \in S'_Q \) and let \(R \) be a standard rectangle with \(\bar{R} \subset Q \). Set

\[
\begin{align*}
 v(x, t) &= L(u; (x, t), R) & &\text{if } (x, t) \in R, \\
 &= u(x, t) & &\text{if } (x, t) \in Q - R.
\end{align*}
\]

Then \(u \preceq v \) on \(Q \), \(Lv = 0 \) on \(R \), and \(v \in S'_Q \).

REFERENCES

DEPARTMENT OF MATHEMATICS, VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE 37235