MINIMAL TOTAL ABSOLUTE CURVATURE FOR ORIENTABLE SURFACES WITH BOUNDARY

BY JAMES H. WHITE

Communicated by S. S. Chern, September 22, 1973

Let M be an orientable surface with single smooth boundary curve C which is C^2 imbedded in Euclidean three-space E^3. (M may be thought of as a closed orientable surface with a single disc removed.) Let M_ε be the set of points of E^3 at a distance ε from M. M_ε is, of course, for small ε, an imbedded closed surface which is almost everywhere C^2. Using N. Grossman’s [1] adaptation of N. Kuiper’s [2] definition, we say that M has minimal total absolute curvature if M_ε is tightly imbedded or has the two piece property, TPP [2].

We announce the following result:

Theorem. Let M be an orientable surface of genus g with a single smooth boundary curve which is C^2 imbedded in E^3. Then M has minimal total absolute curvature if and only if M has $g=0$ and is a planar disc bounded by a convex curve.

The proof uses a series of integral equations and geometric arguments. The outline is as follows. First, in his paper [1], N. Grossman shows that an orientable surface M of genus g with boundary curve C has minimal total absolute curvature only if the following integral equality holds:

\[
\frac{1}{2\pi} \int_M |K| \, dA + \frac{1}{2\pi} \int_C \kappa \, ds = 1 + 2g,
\]

where K is the Gauss curvature of M and κ is the Frenet curvature of the boundary curve C considered as a space curve in E^3, where dA is the area element of M and ds is the arc element of C. Note that the right-hand side is the sum of the betti-numbers of M and compare with Kuiper [2] for closed surfaces.

Next, the theorem of Gauss-Bonnet yields

\[
\frac{1}{2\pi} \int_M K \, dA + \frac{1}{2\pi} \int_C \kappa \, ds = 1 - 2g,
\]

Copyright © American Mathematical Society 1974
where κ_g is the geodesic curvature of C considered as a curve on the surface M.

Adding (1) and (2), we obtain that if M has minimal total absolute curvature,
\begin{equation}
\frac{2}{2\pi} \int_{M^i(K>0)} K\, dA + \frac{1}{2\pi} \int_C (\kappa + \kappa_g) \, ds = 2,
\end{equation}
where the first integral is taken over the points of M where $K>0$.

Lemma 1. If M has minimal total absolute curvature, then M has TPP.

In [3], L. Rodriguez shows that, if M has TPP,
\begin{equation}
\frac{1}{2\pi} \int_{M^i(K>0)} K\, dA + \frac{1}{2\pi} \int_C (\kappa + \kappa_g) \, ds = 2.
\end{equation}
Subtracting (4) from (3), we obtain $(1/2\pi) \int_{M^i(K>0)} K\, dA=0$, and hence $K\leq 0$ in the interior of M.

Lemma 2. $K\leq 0$ in the interior of M.

Lemma 3. C is a plane convex curve.

Lemma 3 is proved by using Morse theory and studying the convex hull of M.

Lemma 4. $K\equiv 0$ in the interior of M.

This follows immediately from Lemmas 2 and 3.

Now Lemma 4 implies $\int_M |K| \, dA=0$, and Lemma 3 implies $(1/2\pi) \int_C \kappa \, ds=1$. Thus, in order for equation (1) to hold g must be zero and M must be a planar disc bounded by a convex curve.

References

3. L. Rodriguez, The two-piece-property and relative tightness for surfaces with boundary (xeroxed thesis), Brown University, Providence, R.I.

Department of Mathematics, University of California, Los Angeles, California 90024