A subsequence principle in probability theory (applied to the law of the iterated logarithm)
Author:
S. D. Chatterji
Journal:
Bull. Amer. Math. Soc. 80 (1974), 495-497
MSC (1970):
Primary 60F15; Secondary 28A65
DOI:
https://doi.org/10.1090/S0002-9904-1974-13464-6
MathSciNet review:
0345177
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. S. D. Chatterji, A general strong law, Invent. Math. 9 (1969/70), 235–245. MR 266276, https://doi.org/10.1007/BF01404326
- 2. S. D. Chatterji, Un principe de sous-suites dans la théorie des probabilités, Séminaire de Probabilités, VI (Univ. Strasbourg, année universitaire 1970-1971; Journées Probabilistes de Strasbourg, 1971) Springer, Berlin, 1972, pp. 72–89. Lecture Notes in Math., Vol. 258 (French). MR 0394810
- 3. S. D. Chatterji, Les martingales et leurs applications analytiques, École d’Été de Probabilités: Processus Stochastiques (Saint Flour, 1971) Springer, Berlin, 1973, pp. 27–164. Lecture Notes in Math., Vol. 307 (French). MR 0448536
- 4. S. D. Chatterji, A principle of subsequences in probability theory: the central limit theorem, Advances in Math. 13 (1974), 31–54; correction, ibid. 14 (1974), 266–269. MR 341564, https://doi.org/10.1016/0001-8708(74)90064-4
- 5. S. D. Chatterji, A principle of subsequences in probability theory. II. (The law of the iterated logarithm) (to appear).
- 6. Philip Hartman and Aurel Wintner, On the law of the iterated logarithm, Amer. J. Math. 63 (1941), 169–176. MR 3497, https://doi.org/10.2307/2371287
- 7. A. Kolmogoroff, Über das Gesetz des iterierten Logarithmus, Math. Ann. 101 (1929), no. 1, 126–135 (German). MR 1512520, https://doi.org/10.1007/BF01454828
- 8. J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. MR 210177, https://doi.org/10.1007/BF02020976
- 9. J. Marcinkiewicz and A. Zygmund, Remarque sur la loi du logarithme itéré, Fund. Math. 29 (1937), 215-222.
- 10. William F. Stout, A martingale analogue of Kolmogorov’s law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 279–290. MR 293701, https://doi.org/10.1007/BF00533299
- 11. V. Strassen, A converse to the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965/66), 265–268. MR 200965, https://doi.org/10.1007/BF00539114
- 12. Mary Weiss, On the law of the iterated logarithm for uniformly bounded orthonormal systems, Trans. Amer. Math. Soc. 92 (1959), 531–553. MR 107117, https://doi.org/10.1090/S0002-9947-1959-0107117-0
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 60F15, 28A65
Retrieve articles in all journals with MSC (1970): 60F15, 28A65
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1974-13464-6