ON DECOMPOSITIONS OF A MULTI-GRAAPH
INTO SPANNING SUBGRAPHS

BY RAM PRAKASH GUPTA

Communicated by Gian-Carlo Rota, April 23, 1973

1. Let G be a multi-graph, i.e., a finite graph with no loops. V(G) and
E(G) denote the vertex-set and edge-set of G, respectively. For x \in V(G),
d(x, G) denotes the degree (or valency) of x in G and m(x, G) denotes the
multiplicity of edges at x in G, i.e., the minimum number m such that x
is joined to any other vertex in G by at most m edges.

A graph H is called a spanning subgraph of G if V(H)=V(G) and
E(H)\subseteq E(G). Let k be any positive integer. Let

(1.1) \[\sigma: G = H_1 \cup H_2 \cup \cdots \cup H_k \]

be a decomposition of G into k spanning subgraphs so that (1) H_1, H_2, \cdots,
H_k are spanning subgraphs of G; (2) H_1, H_2, \cdots, H_k are pairwise edge-
disjoint; and, (3) \[\bigcup_{1 \leq a \leq k} E(H_a) = E(G). \]

For each x \in V(G), let \(v(x, \sigma) \) denote the number of subgraphs H_a in \(\sigma \) such that d(x, H_a)\geq 1. Evidently,

(1.2) \[v(x, \sigma) \leq \min\{k, d(x, G)\} \quad \text{for all } x \in V(G). \]

2. Given a multi-graph G and any positive integer k, we consider the
problem of determining a decomposition \(\sigma \) of G into k spanning subgraphs
such that \(v(x, \sigma) \) is as large as possible for each vertex \(x \in V(G). \) In
particular, we have proved the following two theorems.

THEOREM 2.1. If G is a bipartite graph, then, for every positive integer
k, there exists a decomposition \(\sigma \) of G into k spanning subgraphs such that

(2.1) \[v(x, \sigma) = \min\{k, d(x, G)\} \quad \text{for all } x \in V(G). \]

THEOREM 2.2. If G is a multi-graph, then, for every positive integer k,
there exists a decomposition \(\sigma \) of G into k spanning subgraphs such that

(2.2) \[v(x, \sigma) \geq \min\{k - m(x, G), d(x, G)\} \quad \text{if } d(x, G) \leq k \]
\[\geq \min\{k, d(x, G) - m(x, G)\} \quad \text{if } d(x, G) \geq k, \]

for all \(x \in V(G). \)
Moreover, if \(W \subseteq V(G) \) is such that
\[
W \cap \{x \in V(G) : k - m(x, G) < d(x, G) < k + m(x, G)\}
\]
is independent, then \(\sigma \) can be so chosen that, in addition to (2.2), we have
\[
\nu(x, \sigma) = \min\{k, d(x, G)\} \quad \text{for all } x \in W.
\]

3. The above theorems generalize some well-known theorems in graph theory.

Let \(G \) be a multi-graph; let \(H \) be a spanning subgraph of \(G \). \(H \) is said to be a matching of \(G \) if for every vertex \(x \), \(d(x, H) \leq 1 \); \(H \) is said to be a cover of \(G \) if for every vertex \(x \), \(d(x, H) \geq 1 \). The chromatic index of \(G \), denoted by \(\chi_1(G) \), is defined to be the minimum number \(k \) such that there exists a decomposition of \(G \) into \(k \) spanning subgraphs each of which is a matching of \(G \). The cover index of \(G \), denoted by \(\kappa_1(G) \), is the maximum number \(k \) such that there exists a decomposition of \(G \) into \(k \) spanning subgraphs each of which is a cover of \(G \).

Theorems 3.1 and 3.2 below are obtained from Theorem 2.1 by taking \(k = \max_{x \in V(G)} d(x, G) \) and \(k = \min_{x \in V(G)} d(x, G) \), respectively.

Theorem 3.1 [1]. If \(G \) is a bipartite graph, then,
\[
\chi_1(G) = \max_{x \in V(G)} d(x, G).
\]

Theorem 3.2 [2]. If \(G \) is a bipartite graph, then,
\[
\kappa_1(G) = \min_{x \in V(G)} d(x, G).
\]

Similarly, Theorems 3.3 and 3.4 are seen to be special cases of Theorem 2.2.

Theorem 3.3 [3], [4]. If \(G \) is a multi-graph, then,
\[
\chi_1(G) \leq \max_{x \in V(G)} \{d(x, G) + m(x, G)\}.
\]

Theorem 3.4 [5]. If \(G \) is a multi-graph, then,
\[
\kappa_1(G) \geq \min_{x \in V(G)} \{d(x, G) - m(x, G)\}.
\]

Remark. We have also generalized Theorem 2.1 to a theorem for balanced hypergraphs which contains as special cases some theorems due to C. Berge [6].
REFERENCES

Department of Mathematics, Ohio State University, Columbus, Ohio 43210

Current address: Indian Statistical Institute, 503, Yojna Bhavan, New Delhi-1, India