NORMAL FIELD EXTENSIONS K/k AND K/k-BIALGEBRAS

BY DAVID J. WINTER

Communicated by George Seligman, August 28, 1973

Throughout the paper K/k is a field extension and p is the exponent characteristic.

In this paper I introduce the notion of K/k-bialgebra (coalgebra over K and algebra over k) and describe a theory of finite dimensional normal field extensions K/k based on a K-measuring K/k-bialgebra $H(K/k)$ (see 1.2, 1.6 and 1.10). This approach to studying K/k was inspired by my conviction that a successful theory would, in view of the Jacobson-Bourbaki correspondence theorem, result from suitably equipping the endomorphism ring $\text{End}_k K$ of K/k with additional structure which would effectively reflect the multiplicative structure of K.

Some initial parts of the theory developed here are parallel to Moss Sweedler’s very effective theory of normal extensions based on a universal cosplit K-measuring k-bialgebra (coalgebra over k and algebra over k) [1].

In §1 the structure of K/k is related to that of $H(K/k)$. At the same time, general properties of K/k-bialgebras are described. In §2, K-measuring k-bialgebras and semilinear K-measuring K/k-bialgebras are related, and the structure of semilinear conormal K-measuring K/k-bialgebras is described. In §3 the structure of a finite dimensional radical extension K/k and that of its K/k-bialgebra $H(K/k)$ are described in detail in terms of the toral k-subbialgebra T of $H(K/k)$. As an application of the theory of toral subbialgebras, a generalization of a theorem of Jacobson on finite dimensional Lie algebras of derivations of a field K is given in §4.

The material outlined in this paper is the outgrowth of preliminary research described at the 1971 Ohio State University Conference on Lie Algebras and Related Topics. A complete development of this material is given in a forthcoming book [2].

AMS (MOS) subject classifications (1970). Primary 12F05, 12F10, 12F15, 15A78.
Key words and phrases. Field extension, Galois, normal, purely inseparable, bialgebra.

1 The research described here was supported in part by the National Science Foundation.
1. **K/k-bialgebras and H(K/k).** The ring End_{k}K of k-linear endomorphisms of a field extension K/k can be regarded as a K/k-algebra in the sense of the following definition.

1.1. **Definition.** A K/k-algebra is a vector space A over K together with a mapping \(\pi: A \otimes_k A \rightarrow A \) which is K-linear, A \(\otimes_k A \) being regarded as vector space over K via the left hand factor, such that A together with \(\pi \) is a k-algebra (associative algebra with identity over k).

1.2. **Definition.** \(H(K/k) \) is the union of all coclosed subsets of End_{k}K, "coclosed" being defined as follows.

1.3. **Definition.** A subset C of End_{k}K is coclosed if for each \(x \in C \), there exist elements \(x_1, x_2, \ldots, x_n \in C \) such that \(x(ab) = \sum_i x(a)x_i(b) \) for all \(a, b \in K \).

1.4. **Proposition.** \(H(K/k) \) is a coclosed K-subspace of End_{k}K and a subalgebra of End_{k}K as k-algebra.

By the above proposition, we may regard \(H(K/k) \) as K/k-algebra.

1.5. **Theorem.** There exist K-linear mappings \(\Delta: H(K/k) \rightarrow H(K/k) \otimes_k H(K/k) \) and \(\varepsilon: H(K/k) \rightarrow K \) uniquely determined by the conditions:

1. for \(x \in H(K/k) \) and \(x_1, x_2, \ldots, x_n \in H(K/k) \), \(\Delta(x) = \sum_i x \otimes x_i \) if and only if \(x(ab) = \sum_i x(a)x_i(b) \) for all \(a, b \in K \);
2. \(\varepsilon(x) = x(1_{K}) \) for all \(x \in H(K/k) \), \(1_{K} \) being the identity of K.

1.6. **Theorem.** \(H(K/k) \) as K/k-algebra together with the mappings \(\Delta, \varepsilon \) is a K/k-bialgebra in the sense of the following definition.

1.7. **Definition.** A K/k-bialgebra is a K/k-algebra H together with mappings \(\Delta: H \rightarrow H \otimes_k H \) and \(\varepsilon: H \rightarrow K \) such that H together with \(\Delta \) and \(\varepsilon \) is a K-coalgebra and

1. \(\Delta(1_{H}) = 1_{H} \otimes 1_{H} \);
2. \(\Delta(xy) = \sum_{i,j} x_i y \otimes x_i y_j \) whenever \(x, y \in H \), \(\Delta(x) = \sum_i x \otimes x_i \) and \(\Delta(y) = \sum_j y \otimes y_j \);
3. \(\varepsilon(1_{H}) = 1_{K} \);
4. \(\varepsilon(xy) = \varepsilon(x)\varepsilon(y) \) for all \(x, y \in H \) such that \(\varepsilon(y) \in k \).

A k-bialgebra is a k/k-bialgebra. A subbialgebra respectively bi-ideal of a K/k-bialgebra (or k-bialgebra) H is a subring and subcoalgebra D/ideal and coideal P of H.

Obviously, D and H/P are K/k-bialgebras (k-bialgebras).

1.8. **Theorem.** If the dimension K:k of K over k is finite, then \(H(K/k) = \text{End}_{k}K \).

The inclusion mapping \(i: H(K/k) \rightarrow \text{End}_{k}K \) is a measuring representation of \(H(K/k) \) on K in the following sense.
1.9. DEFINITION. A measuring representation of a \(K \)-coalgebra \(H \) on a \(K/k \)-algebra \(A \) is a \(K \)-linear mapping \(\rho: H \rightarrow \text{End}_k A \) such that \(\rho(x)(1_A) = e(x)1_A \) and \(\rho(x)(ab) = \sum \rho(\varepsilon(x))(a)\rho(x)(b) \) for \(x \in H \) and \(a, b \in A \). A measuring representation of a \(K/k \)-bialgebra (\(k \)-bialgebra) \(H \) on a \(K/k \)-algebra (\(k \)-algebra) \(A \) is a mapping \(\rho: H \rightarrow \text{End}_k A \) which is a representation of \(H \) as \(k \)-algebra and a measuring representation of \(H \) as \(K \)-coalgebra (\(k \)-coalgebra).

\(H(K/k) \) together with \(i \) is a \(K \)-measuring \(K/k \)-bialgebra in the following sense.

1.10. DEFINITION. A \(K \)-measuring \(K/k \)-bialgebra (\(K \)-bialgebra) \(H \) together with a measuring representation \(\rho \) of \(H \) on \(K \). The shorthand notation \(\rho(x)(a) = x(a) \) for \(a \in K, x \in H \) is often used for measuring bialgebras (\(H, \rho \)).

For any \(K \)-measuring \(K/k \)-bialgebra (\(K \)-bialgebra) \((H, \rho) \), let \(K^H \) be the subfield \(\{ a \in K | \rho(x)(ab) = a\rho(x)(b) \) for all \(b \in K \) and all \(x \in H \} \) and let \(\text{Kern } H = \{ x \in H | \rho(x) = 0 \} \).

1.11. THEOREM. Let \(H \) be a \(K \)-measuring \(K/k \)-bialgebra. Then \(\text{Kern } H \) is a bi-ideal of \(H \). If \(K:K < \infty \), then \(H/\text{Kern } H \) is isomorphic as \(K/k \)-bialgebra to \(H(K/K^H) \).

The above theorem has no natural counterpart for \(K \)-measuring \(k \)-bialgebras \(H \), since \(\text{Kern } H \) is not always a bi-ideal of \(H \).

Let \(\mathcal{K} = \{ k' | k' \text{ is a subfield of } K \text{ containing } k \text{ and } K:k' < \infty \} \) and \(\mathcal{S} = \{ H | H \text{ is a subbialgebra of } H(K/k) \text{ and } H:K < \infty \} \).

1.12. THEOREM. \(\mathcal{K} \) is mapped bijectively to \(\mathcal{S} \) by the mapping \(k' \mapsto H(K/k') \).

1.13. THEOREM. For \(K:k < \infty \), \(K/k \) is normal respectively radical respectively Galois if and only if \(H(K/k) \) is conormal respectively coradical respectively co-Galois in the sense of 1.15 below.

1.14. DEFINITION. A \(K \)-coalgebra \(H \) is colocal respectively cosemisimple respectively cosplit respectively cocommutative if \(H \) has a unique minimal nonzero subcoalgebra respectively \(H \) is the sum of its minimal nonzero subcoalgebras respectively every minimal nonzero subcoalgebra of \(H \) is one dimensional respectively \(\Delta(x) = \sum x_i \otimes x_i \) if and only if \(\Delta(x) = \sum x_i \otimes x_i \) for all \(x \in H \), that is, if the dual \(K \)-algebra \(H^* \) of \(H \) is local respectively semisimple respectively split respectively commutative. (Here, \(H^* \) is semisimple if every finite dimensional homomorphic image is a direct sum of fields.)

1.15. DEFINITION. A \(K/k \)-bialgebra \(H \) is conormal if \(H \) is cosplit and cocommutative and the semigroup \(G(H) \) of grouplike elements of \(H \) is a
group. If \(H \) is conormal, \(H \) is co-Galois respectively coradical if \(H \) is co-semisimple respectively colocal, that is, if

\[
H = KG(H) (\text{K-span of } G(H))/G(H) = \{1_H\}.
\]

1.16. Theorem. A \(K/k \)-bialgebra \(H \) has a unique maximal colocal subbialgebra \(H(1_H) \).

1.17. Theorem. Let \(K/k \) be finite dimensional and normal. Then \(K = K_{\text{Gal}} K_{\text{rad}} \) (internal tensor product of \(k \)-algebras) and \(H(K/k) = H_{\text{Gal}} H_{\text{rad}} \) (internal tensor product of \(k \)-algebras) where \(K_{\text{Gal}} \) and \(K_{\text{rad}} \) are Galois and radical extensions of \(k \) respectively, \(H_{\text{Gal}} \) and \(H_{\text{rad}} \) are \(K_{\text{Gal}} \)- and \(K_{\text{rad}} \)-subbialgebras of \(H \) respectively, in the sense of 1.18 below, \(H_{\text{Gal}} \) and \(H_{\text{rad}} \) stabilize \(K_{\text{Gal}} \) and \(K_{\text{rad}} \) respectively and the mappings \(x \mapsto x|_{K_{\text{Gal}}} \) and \(y \mapsto y|_{K_{\text{rad}}} \) map \(H_{\text{Gal}} \) and \(H_{\text{rad}} \) isomorphically to \(H(K_{\text{Gal}}/k) \) and \(H(K_{\text{rad}}/k) \) respectively.

A subset \(C \) of a \(K/k \)-bialgebra \(H \) is coclosed if for each \(x \in C \), there exist \(x_1, x_2, \ldots, x_n \in C \) such that \(\Delta(x) = \sum_i x_i \otimes_K x_i \). A \(k' \)-subspace \(C \) of \(H \) is linearly disjoint to \(K \) over \(k' \) if a \(k' \)-basis for \(C \) is a \(k \)-basis for the \(K \)-span \(KC \) of \(C \), \(k' \) being a subfield of \(K \) containing \(k \).

1.18. Definition. A \(k' \)-subcoalgebra of a \(K/k \)-bialgebra \(H \) is a coclosed \(k' \)-subspace \(H' \) of \(H \) containing \(1_H \) which is linearly disjoint to \(K \) over \(k' \) and satisfies the condition \(e(H') \subseteq k' \). A \(k' \)-subbialgebra respectively \(k \)-subbialgebra of \(H \) is a subring of \(H \) which is also a \(k' \)-subcoalgebra respectively \(k \)-subcoalgebra of \(H \).

1.19. Proposition. A \(k' \)-subcoalgebra respectively \(k'/k \)-subbialgebra respectively \(k'-k \)-subbialgebra of a \(K/k \)-bialgebra \(H \) can be regarded naturally as a \(k' \)-coalgebra respectively \(k' /k \)-bialgebra respectively \(k'-k \)-bialgebra.

1.20. Theorem. For any finite dimensional normal extension \(K/k \) and for \(H = H(K/k) \), \(H(1_H) = H(K/K_{\text{Gal}}) \) and \(KG(H) = H(K/K_{\text{rad}}) \). Moreover, \(H_{\text{rad}} \) and \(H_{\text{Gal}} \) are \(K_{\text{rad}} \)- and \(K_{\text{Gal}} \)-forms of the \(K/k \)-bialgebras \(H(1_H) \) and \(KG(H) \) respectively, in the following sense.

1.21. Definition. A \(k' \)-form/\(k \)-form of a \(K/k \)-bialgebra \(H \) is a \(k' \)-subbialgebra respectively \(k \)-subbialgebra \(H' \) of \(H \) such that \(H = KH' \) (\(K \)-span of \(H' \)).

1.22. Theorem. Let \(K/k \) be finite dimensional and normal. Then the cosplit \(k \)-forms \(H \) of \(H(K/k) \) which stabilize \(K_{\text{rad}} \) and \(K_{\text{Gal}} \) are those of the form \(H = H_{\text{rad}} (kG) \) (internal tensor product of \(k \)-bialgebras) where \(H_{\text{rad}} \) is a \(k \)-form of \(H(K/K_{\text{Gal}}) \) and \(G \) is the group of automorphisms of \(K/k \).

In particular, the problem of finding a \(k \)-form for \(H(K/k) \) for \(K/k \) finite
dimensional and normal reduces to the same problem for K/k finite dimensional and radical.

2. The structure of conormal K-measuring K/k-bialgebras. Let H_k be a k-bialgebra and ρ a measuring representation of H_k on a k-algebra A. Then $A \otimes_k H_k$ can be regarded as k-algebra with product

$$(a \otimes x)(b \otimes y) = \sum_i a_i x(b) \otimes x_i y \quad (a, b \in A, x, y \in H_k),$$

called the semidirect product (smash product) of A and H.

2.1. Proposition. Let (H_k, ρ_k) be a K-measuring k-bialgebra. Then $(K \otimes_k H_k, \text{id}_K \otimes \rho_k)$ together with the semidirect product k-algebra structure and obvious K-coalgebra structure for $K \otimes_k H_k$ is a K-measuring K/k-bialgebra which is semilinear in the sense that $x(by) = \sum_i x(b)x_i y$ for all $b \in K, x, y \in K \otimes_k H_k$.

2.2. Proposition. Let (H, ρ) be a semilinear K-measuring K/k-bialgebra. Let H_k be a k-form of H and let $\rho_k = \rho|_{H_k}$. Then (H_k, ρ_k) is a K-measuring k-bialgebra and (H, ρ) is isomorphic to $(K \otimes_k H_k, \text{id}_K \otimes \rho_k)$.

2.3. Definition. Let C_K be a K-coalgebra, C_k a k-coalgebra. Then one can construct the tensor product K-coalgebra $C_K \otimes_k C_k$. If H_K is a K/k-bialgebra and H_k a k-bialgebra, the tensor product K/k-bialgebra $H_K \otimes_k H_k$ has the tensor product k-algebra and K-coalgebra structures.

2.4. Definition. Let H be a K/k-bialgebra. Let H_K be a K/k-subbialgebra of H and H_k a k-subbialgebra of H. Then we say that H is the internal semidirect product of H_K and H_k or that $H = H_K H_k$ (internal semidirect product K/k-bialgebra) if there exists a measuring representation ρ of H_k on H_K such that the K-linear mapping $H_K \otimes_k H_k \to H$ induced by the product in H is an isomorphism (of k-algebra and K-coalgebras) from $H_K \otimes_k H_k$ (semidirect product k-algebra with respect to ρ and tensor product K-coalgebra).

The following theorem generalizes to K/k-bialgebras a theorem due to Bertram Kostant [I] on k-bialgebras.

2.5. Theorem. Let H be a conormal semilinear K-measuring K/k-bialgebra. Then $H = H(1_H) k G(H)$ (internal semidirect product K/k-bialgebra) where $k G(H)$ is the k-span of $G(H)$.

2.6. Definition. A K-measuring K/k-bialgebra (H, ρ) is $G(H)$-faithful if the restriction of ρ to $G(H)$ is injective.

If K_{rad}/k and K_{Gal}/k are finite dimensional radical and Galois extensions respectively, H_{rad} is a coradical K_{rad}-measuring K_{rad}/k-bialgebra and H_{Gal} is a co-Galois $G(H_{\text{Gal}})$-faithful K_{Gal}-measuring K_{Gal}/k-bialgebra, then
1974] NORMAL FIELD EXTENSIONS K/k AND K/k-BIALGEBRAS 511

$H=H_{\text{rad}} \otimes_k H_{\text{Gal}}$ can be regarded naturally as conormal $G(H)$-faithful K-measuring K/k-bialgebra where $K=K_{\text{rad}} \otimes_k K_{\text{Gal}}$.

The following theorem generalizes 1.17.

2.7. **Theorem.** The finite dimensional conormal $G(H)$-faithful semilinear measuring bialgebras H are precisely the $H_{\text{rad}} \otimes_k H_{\text{Gal}}$ described above.

3. **The toral structure of a radical extension K/k and its K/k-bialgebra $H(K/k)$.** Let K/k be finite dimensional.

3.1. **Definition.** A k-subcoalgebra (k-subbialgebra) T of $H(K/k)$ is diagonalizable respectively toral if $t^p \in T$ for all $t \in T$, $st=ts$ for all s, $t \in T$ and each element of T is diagonalizable respectively semisimple as linear transformation of K over k.

3.2. **Theorem.** There is a bijective correspondence between the diagonalizable k-subbialgebras of $H(K/k)$ and the decompositions $K=\sum_{i \in S} K_i$ (direct sum of k-subspaces) such that $\{K_i|i \in S\}$ is a group under the composition $K_iK_j=\text{span} \{xy|x \in K_i, y \in K_j\}$.

3.3. **Theorem.** $K=k(x_1)\cdots k(x_n)$ (internal tensor product of k-algebras where $x_i^e \in k$ $(1 \leq i \leq n)$ for some integer $e>0$ if and only if $K^T=k$ for some diagonalizable k-subbialgebra of $H(K/k)$.

Assume throughout the remainder of the section that K/k is radical. Let L be the separable closure of k, $R=L \otimes_k K$, $\bar{k}=L \otimes_k k$, $\bar{T}=L \otimes_k T$ for any vector space T over k. Let the group G of automorphisms of L/k act on R, \bar{k}, \bar{T} by $g(a \otimes b)=g(a) \otimes b$ for $g \in G$. Identify $H(K/k) \otimes_k T$ and $H(R/k)$.

3.4. **Theorem.** The set of toral k-subcoalgebras (k-subbialgebras) of $H(K/k)$ is mapped bijectively to the set of G-stable diagonalizable k-subcoalgebras (k-subbialgebras) of $H(R/k)$ under $T \mapsto \bar{T}$, the inverse being $\bar{T} \mapsto T^G$ (fixed points of G in T).

3.5. **Theorem.** Let T be a toral k-subbialgebra of $H(K/k)$. Then the centralizer $H(K/k)^T=\{x \in H(K/k)|xt=tx \text{ for all } t \in T\}$ of T in $H(K/k)$ is a K^T-form of $H(K/k)$.

The above theorem implies that $H(K/k)^T$ is a K^T-measuring K^T/k-bialgebra with respect to the measuring representation $\rho:H(K/k)^T \mapsto \text{End}_kK^T$, ρ being restriction to K^T.

3.6. **Theorem.** For any toral k-subbialgebra T of $H(K/k)$, $H(K|K^T)=KT$ (K-span of T) and $H(K^T/k) \cong H(K/k)^T/I$ where I is the bi-ideal $\{x \in H(K/k)^T:x|_KT=0\}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
4. Lie p-subcoalgebras of $H(K/k)$. Let K/k be a (possibly infinite dimensional) field extension.

4.1. DEFINITION. A Lie p-subcoalgebra of $H(K/k)$ is a K-subcoalgebra C of $H(K/k)$ such that $[x, y] = xy - yx$ and x^p are elements of C for all $x, y \in C$.

4.2. THEOREM. Let C be a finite dimensional colocal K-subcoalgebra of $H(K/k)$. Then $K^{p^n} \subseteq K^C$ for some n.

4.3. THEOREM. Let C be a finite dimensional Lie p-subcoalgebra of $H(K/k)$. Then $K:K^C < \infty$.

The above theorem is proved by induction, using a more general version of Theorem 3.5.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104 (Current address)

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91109