Let C^n denote the space of n complex variables $z=(z_1, \ldots, z_n)$ with Euclidean norm $\|z\|$. The open unit ball $\{z \in C^n : \|z\|<1\}$ is denoted by B^n. We consider holomorphic functions $f(z)=(f_1(z), \ldots, f_n(z)), z \in B^n$, from B^n into C^n. The second derivative of such a function is a symmetric bilinear operator, $D^2f(z)(\cdot, \cdot)$ on $C^n \times C^n$, and $D^2f(z)(z, \cdot)$ is the linear operator obtained by restricting $D^2f(z)$ to $z \times C^n$, with matrix representation

$$D^2f(z)(z, \cdot) = \left(\sum_{m=1}^{n} \frac{\partial^2 f_k(z)}{\partial z_j \partial z_m} z_m \right), \quad 1 \leq j, k \leq n.$$

A locally biholomorphic mapping $f(z)$ from a domain $G \subset C^n$ into C^n is said to be K-quasiconformal in G if $\|Df(z)\|^n \leq K|\det Df(z)|, z \in G$, where $\|\|$ denotes the standard operator norm $\|A\| = \sup\{\|Aw\| : \|w\| \leq 1\}, A \in \mathcal{L}(C^n)$.

The purpose of this note is to announce the following n-dimensional ($n \geq 1$) generalizations of one-dimensional results due to J. Becker [1].

Theorem. Let $f(z)$ with $Df(0)=I$ be locally biholomorphic in B^n and satisfy

$$(1) \quad (1 - \|z\|^2) \|Df(z)^{-1}D^2f(z)(z, \cdot)\| \leq c, \quad z \in B^n.$$

If $c \leq 1$ then f is univalent in B^n and

$$\|z\|/(1 + c \|z\|^2) \leq \|f(z)\| \leq \|z\|/(1 - c \|z\|^2), \quad z \in B^n.$$

If f is K-quasiconformal in B^n and $c<1$ then f is univalent and continuous in the closed ball, $\overline{B^n}$, and f can be extended to a quasiconformal homeomorphism of R^{2n} onto R^{2n}.

For $n=1$, (1) is $|zf''(z)f'(z)| \leq c/(1-|z|^2)$, the local biholomorphy implies f is 1-quasiconformal in B^1, and our theorem coincides with...
Becker's results. The quasiconformal extension of \(f \) is not holomorphic on all of \(C^n \), but viewed as a mapping of \(\mathbb{R}^{2n} \) to \(\mathbb{R}^{2n} \), it is ACL, differentiable a.e., and the dilatation is uniformly bounded a.e. (cf. [5, p. 115]). By arguments similar to Becker's, we derive these results from our \(n \)-dimensional generalization [3] of Pommerenke's theory of subordination chains [4], and from the following lemma.

Lemma. Let \(f(z) \) be locally biholomorphic and \(K \)-quasiconformal in \(B^n \). If \(f \) satisfies
\[
(1) \quad \| Df(z) \| = O(1/(1 - \|z\|^c)), \quad z \in B^n,
\]
and \(f \) has a continuous extension to \(\tilde{B}^n \) that satisfies a Lipschitz condition
\[
(2) \quad \| f(z) - f(w) \| \leq M \| z - w \|^{1-c}, \quad z, w \in \tilde{B}^n.
\]

The proof of (2) is fairly elementary, and does not require the use of subordination chains. The proof that (2) implies (3) depends upon \(n \)-dimensional versions of classical theorems of Hardy and Littlewood [2, pp. 361–363].

Complete proofs of our results and details of the theory of \(n \)-dimensional subordination chains will be submitted for publication elsewhere [3].

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, NORTH CAROLINA 27514