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THREE STRUCTURE THEOREMS IN SEVERAL 
COMPLEX VARIABLES 

BY REESE HARVEY 

The purpose of this article is to describe three recent structure theorems 
in the theory of several complex variables and to point out a few of the 
many applications of these three theorems. In the first section we discuss 
a characterization of those currents (defined on an open subset of Cn) 
which correspond to integration over complex subvarieties. The second 
section is concerned with the structure of positive, d-closed currents. 
Finally, in the third section, a characterization of boundaries of complex 
subvarieties of Cn is discussed. A common thread in the techniques of 
proof involves "potential theory" for several complex variables. 

1. Recognizing currents that correspond to integration over complex 
subvarieties. Suppose F is a complex subvariety of an open set in O 
with each irreducible component of F of dimension k. It is sometimes useful 
to consider, instead of the point set V, the linear functional "integration 
over K", which we denote by [V]. More precisely, for each compactly 
supported smooth form <p of degree 2k, define [V]((p) by integrating <p 
over the manifold points of V. A basic fact about complex subvarieties is 
that in a neighborhood of a singular point the 2A>volume of the manifold 
points is finite (see [4], [16], or [24]). Therefore [V](q>) is locally estimated 
by a constant times the supremum of the coefficients of the form cp. This 
implies that [V] is a current (of real dimension 2k or (real) degree 2n—2k). 
In fact, this estimate implies that the current [V] viewed as a differential 
form with distribution coefficients actually has measures for coefficients. 

There are several ways of recognizing which currents are of the form 
[V] where F is a complex subvariety. The most elementary result of this 
kind says that if Fis a real 2k dimensional submanifold of Cn^R2n and at 
each point of F the tangent space to V, considered as a real linear subspace 
of R2n^.Cn, is in fact a complex linear subspace, then F is a complex sub-
manifold. It will shed light on later results to reinterpret this elementary 
result as follows. Suppose u is a current of degree 2(n—k) (dimension 2k) 
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corresponding to integration over a smooth 2k dimensional oriented sub-
manifold V of an open set in J? 2 n ^C n . Then F is a complex submanifold 
if and only if u is of bidegree n—k, n—k (or bidimension k, k); where a 
current u is said to be of bidegree n—k, n—k {bidimension k, k) if u(<p)=0 
for all (p=fdzIAdzJ=fdziiA- • -Adzt Adzj%A' • -Adzj except when/?—q=k 
(where ƒ is a smooth compactly supported function). The proof of the 
above fact easily reduces to the trivial case where Fis a real linear subspace 
of R2n^Cn. 

Another way of recognizing currents corresponding to integration over 
subvarieties is provided by a special case of a real-variable result of Fédérer 
(see [4, 4.1.15 p. 373]). This result implies that if a current of real dimen
sion 2k defined on an open subset of Cn is, closed under exterior dif
ferentiation, supported on an irreducible complex subvariety V, and of a 
special type called locally flat, then the current is a constant multiple of 
[V] (see King [14, Proposition 3.1.3]). For an example of an application 
of this result suppose that ƒ is a holomorphic function. Then log| ƒ | is 
plurisubharmonic (and hence locally integrable) and in fact pluriharmonic 
outside V={z:f(z)=0} (see [12] or [18] for a discussion of plurisubhar
monic functions). A pluriharmonic function is a function which is annihi
lated by all of the operators d2\dzidzj. Therefore (i/n) ddlog\f\ is a 
current supported on V. Using the result mentioned above it is easy to see 
that: 

(ijir) dd log | / | is the current 2 miWà where {V^} is the family 
of irreducible components of V and each mj e Z+ is the multi
plicity of/vanishing on Vó. 

This formula is of fundamental importance in several complex variables 
(for example in Nevanlinna theory and residue theory). 

Next we examine special properties of currents of the form [V] (where 
F is a complex subvariety), or more generally of integral linear com
binations. Suppose {Vj} is a sequence of irreducible subvarieties of 
dimension k, which satisfy the condition that only a finite number of them 
intersect any given compact set, and that {m}) is a sequence of integers. 
Then the sum 2 miWi\ l* called a holomorphic k-chain. (If k=n— 1 this 
notion is equivalent to the classical notion of a divisor.) If, in addition, 
each mó is positive then 2 ^ [ K J is called & positive holomorphic k-chain. 

Now we list some of the properties of a holomorphic it-chain w= 

2 «TO 
(1) u is of bidimension k, k (bidegree n—k, n—k). 
(2) u is d-closed. 
Here d denotes exterior differentiation. This condition can be inter

preted geometrically as saying that each Vj has no boundary, and is 
rigorously deduced from the fact that du must be supported in the singular 
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points of the Vó (i.e., a set of real dimension ^2k—2) which is too small to 
support a 2A;—1 dimensional boundary (see Fédérer [4] for the details). 

(3) u has measure coefficients and the 2&-density @2fc(w, z) is a positive 
integer at each point z in the support of u. 

Here @2&(w, z)=limr_>0+ MB(z,r)(u)lc2kr2k> where: c21c is the volume of the 
unit ball in R2k, B(z9r) is ball about z of radius r, and Ma(u) = 
sup{|u(q>)\ : <p is a smooth 2k form with compact support in Q, and || ç>|| x ^ 1} 
denotes the 2k-volume or maw of w on Q. For a proof that the above limit 
exists see Lelong [18]. For example, if V={z e C2\z\—zi=0} and u=[V] 
then 62(w, z), the density of u at z, is equal to zero on C2— V, one on the 
manifold points V— {0}, and two at z=0 . The integer 02&([ F], z) is, in fact, 
always the multiplicity of V at z (Draper [3]). 

STRUCTURE THEOREM I. Gw« a current u on an open subset of Cn 

which satisfies (1), (2), and (3) above then u is a holomorphic k-chain. 

See Harvey and Shiffman [11] for the proof. Various results of geo
metric measure theory are employed in this proof. One of the important 
steps (assume k=n— 1) is to construct a meromorphic function ƒ with 
(I/TT) dSlog\f\=u. 

If u=^n;j[Vj] is a positive holomorphic &-chain, then in addition to 
properties (1), (2), and (3) above, the following holds: 

(4) u is positive. 
By definition this means that for each smooth compactly supported 

function <p^0 and for each choice of linear coordinates z=(zl9 • • • , zn), 
the quantity u((p(i/2) dzxl\dzxK- • • A(//2) dzkAdzk) is greater than or equal to 
zero. 

COROLLARY 1.1. Under the hypothesis of Theorem I if u also satisfies 
(4) then u is a positive holomorphic k-chain. 

This very important special case of Theorem I was conjectured by 
Lelong [17] and is due to King [14]. 

One of the most interesting applications of Theorem I, which is not also 
a consequence of the Corollary, is a theorem of Lawson and Simons [15]. 
They prove that every stable current on complex projective «-space is a 
holomorphic chain. See [11] for other applications. (In particular, note 
the uniqueness result, Theorem 3.6, for a special class of Plateau problems 
in O . ) 

A current u of the form 2 cJK,] with {K,} as above and each cj a positive 
real number is called a positive holomorphic k-chain with real coefficients. 
These currents can be characterized as follows (see Harvey and King [8]). 

THEOREM 1.2. Suppose u is a current defined on an open subset of Cn 

which is positive, of bidimension k, k, d-closed, and @2Je(u, z) is bounded 



636 REESE HARVEY [July 

below by a positive constant on each compact subset of the support ofu. Then 
u is a positive holomorphic k-chain with real coefficients. 

Although this theorem naturally belongs in this section, its proof 
(entirely unlike that of Theorem I) depends on a fundamental result of 
Bombieri [1] and [2] which is the basis for structure Theorem II of the 
next section. 

2. Density points of positive, d-closed currents of bidimension k, k. The 
currents which satisfy: (1) bidimension k,k (bidegree n—k, n—k), (2) 
tff-closed, and (4) positive, need not correspond to integration over sub-
varieties. For example (i/2) dd\z\2= ]>J=i (*'/2) dzjAdZj, i 35log(l + |z|2), and 
idd\og\z\2 (w>l), are ^-closed, positive currents of bidegree 1, 1 (bi
dimension «—1, n—1) which do not correspond to integration over sub-
varieties. More generally if cp is any plurisubharmonic function then 
ƒ ddcp is a positive current (which is also d-closed and of bidegree 1, 1). 
In fact this can be taken as the definition of a plurisubharmonic function. 
Suppose (p is a distribution and 

v V̂ 
i ddcp = 2 , - — — i dzô A dzk 

dz5 dzk 

is positive. (For 1,1 currents u=^ujki dzóhdzk is positive if and only if 
2 «jvMfc *s a positive measure for each X e Cn.) One can prove that cp is 
locally integrable and that if one defines cp pointwise by <p(z)= 
ess l i m ^ s <p(w), then y is classically plurisubharmonic. See Lelong [18] or 
Vladimirov [25] for a full discussion. 

Locally every d-closed positive current of bidegree 1, 1 arises as in the 
above discussion. That is, given such a current u on the ball J2(0, r) in Cn 

there exists a solution <p to / dS(p=u (see [11] for example). 
The present section is concerned with the points of high concentration, 

or density, of a positive current u. Interestingly, for positive, rf-closed 
currents u, 

0 2 f c ( W ,z )=hm 
r-+o c2kr 

not only exists, but is the limit of a function which is decreasing as r 
decreases (see Lelong [18, Proposition 10], and Fédérer [4, Theorems 
5.4.3 and 5.4.19]). Consider the example u={iJ7T) 3£log|z| mentioned 
above. Then ©2n_2(*/, z )=0 for z e Cw~{0} and @2n-2(w5 0 )=1 . 

The next structure theorem is due to Siu [22]. This result was con
jectured by Harvey and King [8]. 
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STRUCTURE THEOREM II. Suppose u is a positive, d-closed current of 
bidimension k, k (bidegree n—k, n—k) on an open subset of Cn. Then 
for each c>09Ec={z: ®2k(u, z)=c) û a complex subvariety of dimension ^k. 

This structure theorem depends on a fundamental result of Bombieri 
[1] and [2]. 

STRUCTURE THEOREM IF. Suppose cp is a plurisubharmonic function on 
the ball B(09 r) in Cn. Then for each c > 0 the set Ic={z e B(0, r):^_<p/c is 
not integrable in any neighborhood of z} is a proper subvariety of B(09 r). 

Bombieri [2] also made the following estimates. 

THEOREM 2.1. Suppose cp is given as in the above theorem and let u= 
(ijir) ddcp on B(0, r). Then E2nc

ŒIc
clEycfor each c>0 , where y is a constant 

depending on n. 

These results are used in [8] to prove Theorem 1.2 of the last section. 
REMARK. Skoda [23, Proposition 7.1] has shown that y can be chosen 

equal to 2. This result, Ic^E2c9 is sharp since for ^=log|z1 |2 and w= 
Q/TT) ddcp=2[(z29 • • * , zn) hyperplane], e~<p=\z1\~

2 is not integrable near 
the origin while u has density 2 at the origin. 

Skoda [23] obtained the following very important generalization of 
Theorem 2.1 from positive currents of bidimension n— 1, n—1 to positive 
currents of general bidimension. 

THEOREM 2.2. Suppose u is a positive, d-closed current of bidimension 
k, k (bidegree p,p where p+k=n) defined near the origin in Cn. Then there 
exists a plurisubharmonic function cp such that £c(«)c:/1(ç?)c:JEpc/n(«). 

In other words, Ec(u) is contained in a subvariety Ix((p) which is not 
much bigger than Ec(u) in the sense that I^cp) is contained in Evnic(u). 

Siu's proof of Structure Theorem II proceeds from the above results. 
Let me illustrate one of the ideas of the proof by considering the following 
special case. Suppose u is a positive rf-closed current of bidegree 1, 1 
(bidimension 1, 1) defined in a neighborhood of the origin in G2 and assume 
c > 0 is given. By Theorem II' and Theorem 2.1 above, Ec is contained in a 
complex curve V near the origin. For the sake of simplicity assume that 
V is a connected complex manifold. If EC=V the proof is complete, so 
assume that EC$V, or equivalently that c'=inf{02(w, z):z e V} is <c. 
First consider the case where c '=0 . By Theorem 2.1 and the Remark we 
have Ec<^Ic/é<^Ec/2 Choose z eV with @2(w, z)<c/2. Then z$Ec/2 and 
hence z $ /c /4. Therefore Vn/c/4 is a complex subvariety of dimension zero 
which contains Ec. This proves that if c '=0 then Ec is a finite point set 
(i.e., a zero dimensional subvariety). Finally, assume c'>0 and let v= 
u—c'\V\ Suppose for the moment we have shown that v is positive. Then 
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Q2(u,z)^c implies that 02(i;, z)=02(w, z)—c'^c—c\ that is Ec(u)<=-
Ec-c>(v)- By the argument given above applied to v, £c_C'(f) is a zero di
mensional subvariety. Therefore, if Ec £ V then Ec is a zero dimensional 
subvariety. To complete the proof we must show that u—c'[V] is positive. 
This is a result of Siu of independent interest which holds in greater 
generality. 

PROPOSITION 2.3. Suppose u is a d-closedpositive current of bidimension 
k, k, and that V is a pure k dimensional subvariety with irreducible com
ponents {Vt}. Let <^=inf{02fc(w, z):z e KJ. Then w—2 cf[KJ is positive. 

A sketch of the proof is given for k=n—1 (the case needed above). 
For simplicity assume V is irreducible. The general case is reduced to this 
case. Define a measure /u by ju(Q,)=Mn(u) (/u is the volume measure of u). 
Let a denote In—2 dimensional volume measure induced by V (i.e., 
tf(Q)=Mn([K]), which is the same as the 2n—2 Hausdorff measure of 
f i n F ) . Since 02w_2(w, z ) ^ c o n V, a generalization of the Lebesgue differ
entiation theorem (Fédérer [4, 2.10.19(3)]) says that //—ca is a positive 
measure on F (and hence a positive measure). Next solve i dd(p=u—c[V]. 
Then cp is plurisubharmonic outside V. One can show that \ A99 = //—ca 
(see [18] or [4] for example). Since //—c<r is a positive measure 99 must be 
subharmonic. Therefore cp is locally bounded above. Since cp is plurisub
harmonic outside V and locally bounded above across V, it follows that cp 
is plurisubharmonic (see, for example, Harvey [6, part c of the theorem 
on p. 132]). Therefore u—c[V]=i ddcp is positive. 

By using both Proposition 2.3 and Structure Theorem II a strengthened 
version of Theorem 1.2 can be obtained. 

THEOREM 2.4. Suppose u is a positive, d-closed, current of bidegree 
(n—k9n—k) (bidimension k, k) on an open subset ofCn. There exist irre
ducible subvarieties {V0) and positive constants có such that w = 2 Cj[V0]+v 
where 2 ^MQ([K,])<oo for each relatively compact Q and where v is 
positive with the complex varieties Ec(v) of dimension <k— 1. The above 
representation is unique. 

PROOF. Let c1=sup{c:dimcEc=k} and let Vx denote the union of the 
components of ECl of dimension k. By definition £ C i = p | c < C i Ec, which 
implies that ECi=Ec for some c<cx (see, for example, Narasimham [19, 
Theorem 2, p. 70]). This proves that ECl is of dimension k, or that V^ 0, 
unless cx=0. By Proposition 2.3, wx=w—^[KJ is positive. Let c2= 
sup{c:dimc£c(w1)=fc} and let V2 denote the union of the components of 
£C2(wi) °f dimension k. As above, either c 2=0, in which case the proof is 
complete, or u2=u—c1[V1]—c2[V2] is positive. Continuing we have 
uN=u—^jLiCj[Vj] is positive. One can easily show that the coefficients 
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of the currents uN (which are measures) converge weakly in measure. Let 
v denote the limit of the uN. Then v is positive, and ^-closed. Also since 

M « ( 2 cAvi\) = M " ( w - UN) = Mci(u) - MCI(UN) ^ ^n(w) < °°, 

MQ(UN—*0=MftŒ$+i CjiVil) converges to zero; that is, uN converges to 
v is the mass norm. 

Bombieri's original use of a global version of Theorem II' in "algebraic 
values of meromorphic maps" [1] provides a fascinating application of the 
results in this section. Siu uses his results in this section to prove an 
extension theorem for meromorphic maps conjectured by Griffiths [5]. 
(See Siu [21] for the full strength of the result and the proof.) 

THEOREM 2.5. Suppose A is a subvariety of a complex manifold X of a 
codimension 5^2, and that Y is a compact Kàhler manifold. Every mero
morphic map f from X—A to Y extends to a meromorphic map f from X to 
Y. (Cf. Griffiths [5], Shiffman [20], and Harvey [7].) 

3. Recognizing boundaries of complex varieties. First suppose that a 
compact oriented, 2A:—1 dimensional smooth submanifold M of Cn is 
the boundary of a complex k dimensional manifold V. Then TZ(V)= 
Tz(M)@[v] where [v] is the real line spanned by the normal to M (with 
respect to V) at z. Therefore, the orthogonal complement in the complex 
vector space TZ(V) of the complex line spanned by v, is a complex vector 
space of complex dimension k—\ lying in TZ(M). That is 

dimc(Tz(M) n iTz(M)) = k - 1 for all z G M. 

If this condition is satisfied M will be called maximally complex. (Analog
ously with §1 one can show that the current u=[M] is of bidimension 
(k, k—1) union (k—l, k) if and only if M is maximally complex.) 

STRUCTURE THEOREM III. Let M be a compact, orientable, (2k — 1) 
dimensional real submanifold of Cn of class C with k, r^.2. If M is maxi-
mally complex, then M is the boundary (as a current) of a uniquely deter
mined bounded complex subvariety V of 'Cn—M. 

For details about boundary regularity and further results see the 
announcement [9]. Detailed proofs are to appear in Harvey and Lawson 
[10]. 

The analogue of Theorem III for k=l (i.e., M a real curve) is a known 
result. It is obtained by replacing the vacuous hypothesis that M be a 
maximally complex real curve by the condition that SMœ=Q f ° r a ' l 
holomorphic 1-forms on Cn. The question of which one dimensional real 
curves bound complex curves of one dimension has received a lot of 
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attention beginning with fundamental results of Wermer [26] dealing with 
real-analytic curves. (In most of the works the focus is on finding analytic 
structure in the spectrum of function algebras.) 

Theorem III includes, as the special case where M is the graph of a 
function defined on the boundary of an open set in Cw-1, Bochner's 
infinitesimal version of Hartogs' phenomenon (cf. Hörmander [12, 
Theorem 2.3.2' and Theorem 2.6.13]). 

See Hunt and Wells [13] for some local extension results employing the 
connection made in [10] between extending manifolds and extending 
functions. 
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