ON VITALI-HAHN-SAKS TYPE THEOREMS

BY BARBARA FAIRES

Communicated by Robert Bartle, November 7, 1973

In recent years extensive work has been done on the Vitali-Hahn-Saks theorem and its relatives. Seever [13] considered the question of extending the Vitali-Hahn-Saks theorem to the case where the domain is a Boolean algebra which is not necessarily sigma complete. Brooks and Jewett [2] established results for a strongly bounded map defined on a Boolean sigma algebra of sets with values in a Banach space. Further generalizations to group-valued set functions have been studied by the Poznán school (see [5], [6], [7], [8], [9], [11], [12]). The work of all these authors is generalized herein to the case of strongly bounded maps defined on Boolean algebras with the Seever property and taking values in a Banach space. Some applications other than those considered herein and the final generalization to the group-valued case can be found in [10].

I wish to thank Professor J. Diestel for his advice and encouragement in the preparation of this paper. Also, I wish to express my gratitude to Professors R. E. Huff and J. J. Uhl, Jr. for many helpful discussions.

1. Notation and definitions. A Boolean algebra \(S \) has the property (I) if and only if for any sequences \(\{x_n\} \) and \(\{y_n\} \) in \(S \) satisfying \(x_n \leq y_m \) for all \(n, m \), there exists \(x \in S \) such that \(x_n \leq x \leq y_n \) for all \(n \). This condition is equivalent to the condition: given any sequences \(\{a_n\} \) and \(\{b_n\} \) in \(S \) satisfying \(a_n \wedge a_m = 0, b_n \wedge b_m = 0 \) for \(n \neq m \) and \(a_n \wedge b_m = 0 \) for all \(n, m \), there exists an element \(a \in S \) such that \(a \geq a_n \) and \(b_n \wedge a = 0 \) for all \(n \).

Unless signified otherwise, \(S \) will be used in this paper to denote a Boolean algebra with the property (I). The symbol \(X \) denotes a Banach space and \(X^* \) its Banach space dual.

A finitely additive \(\mu: S \to X \) is bounded whenever there exists \(M > 0 \) such that \(\|\mu(b)\| \leq M \) for all \(b \in S \); \(\mu \) is said to be strongly bounded if \(\|\mu(e_n)\| \to 0 \) as \(n \to \infty \) for each disjoint sequence \(e_1, \ldots, e_n, \ldots \) of elements in \(S \). A sequence \(\mu_n: S \to X, n = 1, 2, \ldots \), is uniformly strongly bounded if for each disjoint sequence \(\{e_n\} \subseteq S \), \(\lim_n \sup_k \|\mu_k(e_n)\| = 0 \). By grouping it is easy to see that if \(\mu \) is strongly bounded and \(\{e_n\} \subseteq S \) is disjoint, then \(\sum_{n=1}^{\infty} \mu(e_n) \) is an unconditionally convergent series in \(X \). A map \(\mu: S \to X \) is

1 Supported in part by a Doctoral Fellowship granted by Kent State University.
countably additive if for every disjoint sequence \(\{e_n\} \subset B \) with \(\bigvee_n e_n \in B \), the equality \(\mu(\bigvee_n e_n) = \sum_n \mu(e_n) \) holds. The semivariation of \(\mu \) on \(b \in B \), denoted by \(\|\mu\|(b) \), is defined to be \(\sup\{\|\mu(a)\| : a \in B, a \leq b\} \). It is easily shown that \(\mu : B \to X \) is strongly bounded if and only if \(\|\mu\| : B \to [0, \infty) \) is strongly bounded (though \(\|\mu\| \) need not be additive).

2. Main results.

Theorem 1. Let \(\mu_n : B \to X \) be finitely additive and strongly bounded for \(n = 1, 2, \cdots \). If \(\lim_n \mu_n(e) = 0 \) for each \(e \in B \), then \(\{\mu_n : n \in N\} \) is uniformly strongly bounded.

Proof. Suppose not. Then there exists a sequence \(\{e_n\} \) of disjoint elements of \(B \), a number \(\varepsilon > 0 \), and a sequence \(m_1 < m_2 < m_3 < \cdots \) of positive integers (to simplify notation, assume \(m_n = n \)) such that for each \(n \in N \), \(\|\mu_n(e_n)\| > 4\varepsilon \).

Let \(i_1 = 1 \). Partition the set \(N \setminus \{1\} \) into an infinite number of infinite disjoint sets \(\pi_n^1, n = 1, 2, 3, \cdots \). Utilizing property (I) we can choose a sequence \(f_n^1, n = 1, 2, \cdots \), of disjoint elements in \(B \) such that:

- \(f_n^1 \geq e_i \) for all \(i \in \pi_n^1, n = 1, 2, \cdots \);
- \(f_n^1 \wedge e_{i_1} = 0, n = 1, 2, \cdots \);
- \(f_n^1 \wedge e_j = 0 \) for all \(j \in (N \setminus \{1\}) \setminus (\bigcup_{i=1}^n \pi_i^1) \).

As \(\|\mu_{i_1}\|(f_n^1) \to 0 \) \((n \to \infty)\) there exists an \(n_1 \in N \) such that \(\|\mu_{i_1}\|(f_n^1) < \varepsilon \).

Choose \(i_2 > i_1 \) and \(\|\mu_{i_1}(e_{i_1})\| < \varepsilon /4 \). Partition the set \(\pi_{n_1}^1 \setminus \{i_1\} \) into an infinite number of infinite disjoint sets \(\pi_n^2, n = 1, 2, \cdots \). Again by property (I) there exists a sequence \(f_n^2, n = 1, 2, \cdots \), of disjoint elements in \(B \) such that:

- \(f_n^2 \geq e_i \) for all \(i \in \pi_n^2, n = 1, 2, \cdots \);
- \(f_n^2 \wedge (e_{i_1} \vee e_{i_2}) = 0, n = 1, 2, \cdots \);
- \(f_n^2 \wedge e_j = 0 \) for all \(j \in (\pi_{n_1}^1 \setminus \{i_1\}) \setminus (\bigcup_{i=1}^n \pi_i^2) \).

There exists an integer \(n_2 \in N \) such that \(\|\mu_{i_2}\|(f_n^2) < \varepsilon \).

Choose \(i_3 > i_2 \) and \(\|\mu_{i_2}(e_{i_2})\|, \|\mu_{i_2}(e_{i_1})\| < \varepsilon /8 \). Proceed in this fashion to obtain a sequence \(f_n^k = f_k, k = 1, 2, \cdots \), of elements of \(B \) and a sequence \(i_1 < i_2 < \cdots \) of positive integers such that:

1. \(f_n \geq e_{i_k}, k > n \);
2. \(f_n \wedge e_{i_k} = 0, 1 \leq k \leq n \);
3. \(\|\mu_{i_1}(f_n)\| < \varepsilon, n = 1, 2, \cdots \);
4. \(\|\mu_{i_k}(e_{i_1})\| < \varepsilon /2^n, 1 \leq k < n \);
5. \(\|\mu_{i_k}(e_{i_1})\| > 4\varepsilon, n = 1, 2, \cdots \).

Let \(h_n = f_n \vee (\bigvee_{k=1}^n e_{i_k}) \). Then \(h_n \geq e_{i_k} \) for all \(n, k \). Choose \(c \in B \) such that

\[
\tag{6} h_n \geq c \geq e_{i_n} \quad \text{for all } n.
\]
Noticing that $\mu_n(c) = \mu_n(h_n - e_n) - \mu_n(h_n - c) + \mu_n(e_n)$, we have

$$\|\mu_n(c)\| \leq \|\mu_n(e_n)\| - \|\mu_n(h_n - e_n)\| - \|\mu_n(h_n - c)\|$$

$$= \|\mu_n(e_n)\| - \|\mu_n\left[\left(\bigvee_{k=1}^{n} e_{ik}\right) \wedge e_i\right]\|$$

$$- \|\mu_n\left[\left(\bigvee_{k=1}^{n} e_{ik}\right) \wedge c'\right]\|,$$

which by (2) is

$$\geq \|\mu_n(e_n)\| - \|\mu_n(f_n \wedge e'_n)\|$$

$$- \|\mu_n\left[\left(\bigvee_{k=1}^{n} e_{ik}\wedge e'_{in}\right)\right]\| - \|\mu_n\left[\left(\bigvee_{k=1}^{n} e_{ik} \wedge c'\right)\right]\|.$$

Applying (2), (6) and the disjointness of the e_{ik}'s yields

$$\geq \|\mu_n(e_n)\| - \|\mu_n(f_n)\|$$

$$- \|\mu_n(e_n)\| - \cdots - \|\mu_n(e_{in-1})\| - \|\mu_n(f_n \wedge c')\|,$$

which by (5), (3) and (4) is $>4\varepsilon - \varepsilon - (n-1)e/2^n - \varepsilon \geq \varepsilon$. Since $\|\mu_n(c)\| > \varepsilon$ holds for infinitely many n, $\lim_n \mu_n(c) \rightarrow 0$, a contradiction.

The proofs of some of the corollaries yielded by Theorem 1 are, for the most part, minor alterations to proofs presented elsewhere; in these cases the appropriate references are given.

Corollary 1 [2, Corollary 1.2]. Let $\mu_n: \mathcal{B} \rightarrow X$ be finitely additive and strongly bounded for $n = 1, 2, \ldots$. If $\lim_n \mu_n(e) = \mu(e)$ exists for each $e \in \mathcal{B}$, then μ is strongly bounded and the μ_n, $n = 1, 2, \ldots$, are uniformly strongly bounded.

Corollary 2. Let $\mu_n: \mathcal{B} \rightarrow X$ be countably additive for $n = 1, 2, \ldots$. If $\lim_n \mu_n(e) = \mu(e)$ exists for each $e \in \mathcal{B}$, then μ is countably additive and the μ_n, $n = 1, 2, \ldots$, are uniformly countably additive.

Corollary 3 [3, Theorem 1.6]. Let X be any separable Banach space and let $\mu: \mathcal{B} \rightarrow X$ be bounded and finitely additive. Then μ is strongly bounded.

Another corollary is the following result proved differently by N. J. Kalton in an unpublished manuscript.

Corollary 4. Let X be a weakly compactly generated Banach space and let $\mu: \mathcal{B} \rightarrow X$ be bounded and finitely additive. Then μ is strongly bounded.
PROOF. Let \(\{e_n\} \) be a disjoint sequence in \(\mathcal{B} \) and let \([\mu(e_n)] = X_0 \) denote the closed linear span of \(\{\mu(e_n): n \in \mathbb{N}\} \). Then \(X_0 \) is a separable subspace of the weakly compactly generated space \(X \); hence by a result of Amir and Lindenstrauss [1, Lemma 4], there is a separable subspace \(Y \) of \(X \) such that \(X_0 \subseteq Y \) and \(Y \) is complemented in \(X \). Suppose \(P: X \to Y \) is the projection. Then Corollary 1.2 yields \(P \circ \mu(e_n) \to 0 \), \(n \to \infty \). But \(P \circ \mu(e_n) = \mu(e_n) \) for each \(n \). Therefore, \(\mu \) is strongly bounded.

COROLLARY 5 [4, COROLLARY 5]. Let \(\mu_n: \mathcal{B} \to X \) be strongly bounded for \(n=1, 2, \cdots \). Suppose \(\mu(e) = \text{weak-limit}_n \mu_n(e) \) exists for each \(e \in \mathcal{B} \). Then \(\mu \) is strongly bounded.

PROOF. The boundedness of \(\mu \) follows from the Banach-Steinhaus theorem and Corollary 1.1 applied to the functions \(f \mu_n, f \mu \) where \(f \in X^* \). For each \(n \) let \(B_n = \mu_n(\mathcal{B}) \) and let \(B = \bigcup_n B_n \). By the definition of \(\mu \) and Mazur's theorem we have \(\mu(\mathcal{B}) \subseteq Y \). We claim that \(Y \) is weakly compactly generated.

For each \(n \), let \(M_n = \sup \| \mu_n(b) \| : b \in \mathcal{B} \). Let \(B = \bigcup_n B_n/(n \cdot M_n) \). The closed linear span of \(B \) is \(Y \) and \(B \) is relatively weakly compact. To see the last assertion, let \(\{y_n\} \) be a sequence in \(B \). Since each \(\mu_n \) is strongly bounded, \(B_n \), and hence \(B_n/(n \cdot M_n) \), is relatively weakly compact [14]. So if \(\{y_n\} \) returns infinitely often to one of the \(B_n/(n \cdot M_n) \)'s, we can extract a weakly convergent subsequence. If \(\{y_n\} \) does not return infinitely often to any \(B_n/(n \cdot M_n) \) then there exist strictly increasing sequences \((m_k) \) and \((n_k) \) of positive integers such that \(y_{m_k} \in B_{n_k}/(n_k \cdot M_{n_k}) \) for each \(k \). It follows that \(\| y_{m_k} \| \leq 1/n_k \to 0 \) as \(k \to \infty \). Thus \(\{y_n\} \) has a norm convergent subsequence.

With the proof proceeding as in [2, Theorem 3] we have the following Vitali-Hahn-Saks theorem.

THEOREM 2. Let \(\mu_n: \mathcal{B} \to X \) be finitely additive and strongly bounded, for \(n=1, 2, \cdots \). Suppose \(\nu \) is a nonnegative monotone set function defined on \(\mathcal{B} \) and each \(\mu_n \ll \nu \). Assume that \(\lim_n \mu_n(e) \) exists for each \(e \in \mathcal{B} \). Then \(\lim_{r(e) \to 0} \| \mu_n(e) \| = 0 \) uniformly in \(n \).

REFERENCES

Department of Mathematics, Kent State University, Kent, Ohio 44240