THE ORIENTED TOPOLOGICAL
AND PL COBORDISM RINGS

BY I. MADSEN AND R. J. MILGRAM

Communicated by William Browder, December 17, 1973

1. Introduction and statement of results. In this note we announce results on the 2-local structure of the oriented topological cobordism ring Ω_*^{TOP} and its PL analogue Ω_*^{PL}.

It is a well-known consequence of transversality that

$$\Omega_*^{\text{TOP}} = \pi_*(\text{MSTOP}), \quad * \neq 4 \quad \text{and} \quad \Omega_*^{\text{PL}} = \pi_*(\text{MSPL}),$$

where MSTOP and MSPL are the oriented Thom spectra.

Also, the homotopy theory of these spectra divides into two distinct problems: the theory at the prime 2 and the theory away from 2. We let $\mathbb{Z}(2)$ denote the integers localized at 2 and $\mathbb{Z}[\frac{1}{2}]$ the integers localized away from 2.

Sullivan [9] showed that the free part of $\Omega_*^{\text{TOP}} \otimes \mathbb{Z}[\frac{1}{2}]$ ($=\Omega_*^{\text{PL}} \otimes \mathbb{Z}[\frac{1}{2}]$); $\Omega_*^{\text{TOP}}/\text{Tor} \otimes \mathbb{Z}[\frac{1}{2}]$ is a polynomial algebra with one generator in each dimension congruent to zero mod 4.

At the prime 2 Browder, Liulevicius and Peterson [2] show that the localized spectra MSTOP(2) and MSPL(2) become wedges of Eilenberg-Mac Lane spectra. Hence the homotopy theory is a direct consequence of the homology theory. In particular,

$$\left(\Omega_*^{\text{TOP}}/\text{Tor}\right) \otimes \mathbb{Z}(2) = H_*(\text{BSTOP}; \mathbb{Z}(2))/\text{Tor}$$

and similarly in the PL case.

Let M_0^{4n}, $n > 1$, be the Milnor manifold of index 8 constructed by plumbing disk tangent bundles of S^{2n} (see Browder [1, p. 122]). The boundary of M_0^{4n} is the PL sphere S^{4n-1}. We set $M^{4n} = M_0^{4n} \cup_{\partial} CS^{4n-1}$ to obtain a closed PL manifold of index 8.

In the rest of this note, $P(X)$, $E(X)$ and $\Gamma(X)$ will denote the polynomial algebra, exterior algebra, and divided power algebra, respectively generated by the set X. For a natural number n, $\alpha(n)$ will be the number of nonzero terms in the dyadic expansion and $r(n)$ the 2-adic valuation ($n = 2^{r(n)}$ odd).

1 Partially supported by NSF contract 29696.
THEOREM A. As rings,

\[(\Omega^\text{TOP}_*/\Tor) \otimes Z_{(2)} = P\{[CP^{2n}] \mid \alpha(n) < \psi(n) + 4\} \otimes \Gamma\{[M^{4n}] \mid \alpha(n) \geq \psi(n) + 4\}.\]

Moreover, \((\Omega^\text{PL}_*/\Tor) \otimes Z_{(2)} = (\Omega^\text{TOP}_*/\Tor) \otimes Z_{(2)}.\) Here \(CP^{2n}\) is the complex projective space.

The torsion structures of \(\Omega^\text{TOP}_* \otimes Z_{(2)}, \ast \neq 4\) and \(\Omega^\text{PL}_* \otimes Z_{(2)}\) are very involved, and even though our techniques give the groups, we know comparatively little about the explicit generators. However, there are a finite number of explicit constructions—twisted products, and Massey products—which generate the torsion from a small set of "basic" torsion manifolds. Among these generators are specific ones given by relations among the Milnor manifolds and the \(CP^{2n}\)'s. For example, the relation below (the first which occurs) generates a \(\Z/2\Z\) direct summand in \(\Omega^\text{PL}_8\).

1.2 \[2\{7[M^8] - 200[CP^8 \times CP^8] + 144[CP^8]\} = 0\]

while in dimension 12 there is a \(\Z/4\Z\) summand generated by the relation

1.3 \[4\{31[M^{12}] - 1620[CP^{12}] + 5292[CP^8] \cdot [CP^8] - 3920[CP^8]^3\} = 0.\]

1.2 and 1.3 are a little surprising since it is well known that the smallest multiple of \(M^8\) which is actually PL homeomorphic to a differentiable manifold is \(28M^8\) while the corresponding number for \(M^{12}\) is 992.

In the rest of this note, all spaces and maps are to be taken in the 2-local category (see [10] for a precise definition). Unless otherwise indicated \(H_\ast(X) (H^\ast(X; Z))\) will denote homology (cohomology) of \(X\) with \(Z\) coefficients. \((\text{Note. } H_\ast(X; Z) = H_\ast(X; Z_{(2)})\) when \(X\) is 2-local.\)

2. Preliminaries. The map \(B(G/TOP) \rightarrow B(G/TOP).\) It is a well-known result of Sullivan that \(G/TOP\) is a product of Eilenberg-Mac Lane spaces. In [7] and [8] specific homotopy equivalences

\[K: G/TOP \rightarrow \prod_{n \geq 1} K(Z_{(2)}, 4n) \times K(Z/2, 4n - 2)\]

were constructed. The mapping \(K\) depends on the "genus" used in the "surgery formulas". In this note we use the map defined in [7].

In [6] we examined the space \(B(G/TOP)\) as well as the natural map \(B\pi_\ast : BSG \rightarrow B(G/TOP).\) The main result there is

PROPOSITION 2.1. (i) There is an H-map

\[BK: B(G/TOP) \rightarrow \prod_{n \geq 1} K(Z_{(2)}, 4n + 1) \times K(Z/2, 4n - 1)\]
with $\Omega(BK \circ B\pi) = K \circ \pi$ and BK a homotopy equivalence ($\pi: SG \to G/\text{TOP}$ the natural map).

(ii) The class $B\pi^*(K_{4n+1})$ is divisible by precisely $2^{a(n)-1}$, where $K_{4n+1} = (BK)^*$ (fundamental class).

Next we specify the classes $(B\pi)^* K_{4n+1}$ more precisely. To do this we will specify the structure of the $Z_{(2)}$ cohomology of BSG by determining its Bochstein spectral sequence (BSS). We first introduce 3 (acyclic) DG-Hopf algebras over $Z_{(2)}$ which will be our basic building blocks.

(I) \[A_0(k) = P\{p_n \mid n \geq 1\} \otimes E\{e_n \mid n \geq 1\}, \]
\[\deg(p_n) = 4n, \quad \deg(e_n) = 4n + 1, \quad \psi(p_n) = \sum p_i \otimes p_{n-i}, \]
\[\psi(e_n) = \sum p_i \otimes e_{n-i} + e_i \otimes p_{n-i}, \quad \delta(p_n) = 2^k e_n. \]

(II) \[A_1\{x \mid k\} = P\{x\} \otimes E\{y\}, \]
\[\deg x = 4n, \quad \deg y = 4n + 1, \quad \psi(x) = 1 \otimes x + x \otimes 1, \]
\[\psi(y) = 1 \otimes y + y \otimes 1, \quad \delta x = 2^k y. \]

(III) \[A_2\{x \mid k\} = E\{y\} \otimes \Gamma(x), \]
\[\deg x = 4n, \quad \deg y = 4n - 1, \quad \psi(y) = 1 \otimes y + y \otimes 1 \]
and
\[\psi(x) = 1 \otimes x + x \otimes 1, \quad \delta y = 2^k x \]
(hence $\delta(y \cdot \gamma_{2r-1}(x)) = 2^{k+r} \gamma_{2r}(x)$). If X is a graded set concentrated in degrees congruent to zero mod 4, we write $A_i\{X \mid k\} = \otimes_{x \in X} A_i\{x \mid k\}$, $i = 1, 2$. Each of the DG-Hopf algebras above have an associated Bochstein spectral sequence $\{E_r(\), d_r\}$. From [5] we quote

Proposition 2.2. For $r \geq 2$, the cohomology BSS of the space BSG is

\[E_r(BSG) = E_r(A_0(3)) \otimes E_r(A_2\{X \mid 2\}) \]

for a suitable graded set X.

Let $j_r: H^*(BSG) \to E_r(BSG)$ denote the natural reduction map. From [3] and [6] we have

Proposition 2.3. (i) $j_{3}(2^{1-a(n)}B\pi^*(K_{4n+1})) = e_n + \text{decomposable terms.}$

(ii) $B\pi^*(K_{4n-1}) = 0$ for $a(n) > 1$.

(iii) $Sq^2 B\pi^*(K_{2l-1}) = e_{2l-1}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
3. The DG-Hopf algebra \mathcal{F}. In §4 we show that the following DG-
Hopf algebra over $\mathbb{Z}_{(2)}$ is a split subalgebra of the BSS for BSTOP.

$$\mathcal{F} = P\{p_n \mid n \geq 1\} \otimes P\{k_n \mid n \geq 1\} \otimes E\{\varepsilon_n \mid n \geq 1\},$$

$$\deg p_n = 4n, \quad \deg k_n = 4n \quad \text{and} \quad \deg \varepsilon_n = 4n + 1,$$

$$\psi(p_n) = \sum p_i \otimes p_{n-i},$$

$$\psi(k_n) = 1 \otimes k_n + k_n \otimes 1, \quad \psi(\varepsilon_n) = 1 \otimes \varepsilon_n + \varepsilon_n \otimes 1,$$

with differential structure given by

$$\delta p_n = 16\varepsilon_n, \quad \delta k_n = 2^{2(n)}\varepsilon_n \quad \text{where} \quad \varepsilon_n = \sum \varepsilon_i p_{n-i}.$$

Husemoller [4] has introduced a splitting of the Hopf algebra $P\{p_n \mid n \geq 1\}$ as a tensor product of “smaller” Hopf algebras,

$$P\{p_n \mid n \geq 1\} = \otimes_{n \text{ odd}} P\{p_{n,0}, p_{n,1}, \cdots, p_{n,i}, \cdots\}$$

$$(\deg p_{n,i} = 2^{i+2}n).$$

We split \mathcal{F} accordingly,

$$\mathcal{F} = \otimes_{n \text{ odd}} \mathcal{F}(n),$$

$$\mathcal{F}(n) = P\{p_{n,0}, p_{n,1}, \cdots\} \otimes P\{k_{n,0}, k_{n,1}, \cdots\} \otimes E\{\varepsilon_{n,0}, \varepsilon_{n,1}, \cdots\}.$$

Here $k_{n,i} = 2^{2n}e_{n,i}$, $\varepsilon_{n,i} = \varepsilon_{n,2i}$ and the differential structure is (inductively) determined by

$$\delta(k_{n,i}) = 2^{2(n)}\varepsilon_{n,i} \quad \text{and} \quad \delta(2^i p_{n,i} + \cdots + p_{n,0}^a) = 2^{i+4}e_{n,i}.$$

Lemma 3.1. (i) If $\alpha(n) < 4$, then

$$E_s(\mathcal{F}(n)) = P\{p_{n,0}, p_{n,1}, \cdots\} \otimes E_s(A_1\{k_{n,0}, k_{n,1}, \cdots \mid \alpha(n)\}).$$

(ii) If $\alpha(n) \geq 4$, then for $s \geq \alpha(n)$,

$$E_s(\mathcal{F}(n)) = P\{k_{n,0}, \cdots, k_{n,0}, k_{n,r}, k_{n,r+1}, \cdots\}$$

$$\otimes E_s(A_1\{k_{n,r}, k_{n,r+1}, \cdots \mid \alpha(n)\}),$$

where

$$r = \alpha(n) - 4 \quad \text{and} \quad k_{n,r+i} = p_{n,i}^a + \sum_{j=1}^{r-1} p_{n,i-j-1}^a p_{n,i-j}^a k_{n,r+i-j} + k_{n,r+i}.$$

4. **Theorem A.** There is a natural map $\text{BSO} \times G/TOP \to \text{BSTOP}$
which on homology leads to

$$P\{a_n \mid n \geq 1\} \otimes \Gamma\{b_n \mid n \geq 1\} \xrightarrow{r^*} H_*(\text{BSTOP})/\text{Tor},$$

where a_n is dual to $p^n_1 \in H^n(\text{BSO})/\text{Tor}$ and b_n is spherical. We observe that the structure of $H_*(\text{BSTOP})/\text{Tor}$ follows at once if we can prove that

$$(H^*(\text{BSTOP})/\text{Tor}) \otimes \mathbb{Z}/2 = E_\alpha(\mathcal{F}), \quad \text{where} \quad E_\alpha(\mathcal{F}) = \otimes_{n \text{ odd}} E_\alpha(\mathcal{F}(n))$$

is
described in 3.1. Therefore the thrust of the argument is to evaluate the BSS of BSTOP.

Our starting point is the fibration sequence, \(\cdots \rightarrow \text{BSTOP} \rightarrow \text{BSG} \rightarrow \text{B}(G/\text{TOP}) \rightarrow \cdots \). It is convenient to decompose this sequence in two steps. Let

\[
\text{BK}_1 = \prod_{i>1} K(\mathbb{Z}/2, 2^i - 1)
\]

and

\[
\text{BK}_2 = \prod_{n>1} K(\mathbb{Z}_{(2)}, 4n + 1) \times \prod_{a(n)>1} K(\mathbb{Z}/2, 4n - 1).
\]

We have the fibration sequences (\(\Omega \text{BK}_i = \text{K}_i \))

\[
\cdots \rightarrow K_1 \rightarrow BX \rightarrow \text{BSG} \rightarrow K_1 \rightarrow \cdots
\]

\[
\cdots \rightarrow K_2 \rightarrow \text{BSTOP} \rightarrow BX \rightarrow K_2 \rightarrow \cdots.
\]

Lemma 4.3. (i) There are graded sets \(X_1 \) and \(X_2 \) such that for \(r \geq 2 \) the \(r \)th term in the BSS of \(BX \) is

\[
E_r(BX) = E_r(A_0(4)) \otimes E_r(A_1(X_1 | 2)) \otimes E_r(A_2(X_2 | 2)).
\]

(ii) The inclusion \(i: K_1 \rightarrow BX \) maps \(E_r(A_1(X_1 | 2)) \) injectively into BSS for \(K_1 \).

It follows from 2.5 and 4.3 above that

\[
H^*(\text{BSTOP}; \mathbb{Z}/2) = H^*(BX; \mathbb{Z}/2) \otimes H^*(K_2).
\]

Let \(j: K_2 \rightarrow \text{BSTOP} \) be the map in 4.2. Our main technical result is

Theorem 4.4. (i) There are graded sets \(Y_1 \) and \(Y_2 \) such that for \(r \geq 2 \)

\[
E_r(\text{BSTOP}) = E_r(\mathcal{F}) \otimes E_r(A_1(Y_1 | 2)) \otimes E_r(A_2(Y_2 | 2)).
\]

(ii) \(j^* \) maps \(E_r(A_1(Y_1 | 2)) \) monomorphically to the BSS for \(\prod K(\mathbb{Z}_{(2)}; 4n) \times \prod_{a(n)>1} K(\mathbb{Z}/2; 4n-2) \).

We first give an exact sequence of spectral sequences,

\[
\mathbb{Z}/2 \rightarrow E_r(A_1(Y_1 | 2)) \otimes E_r(A_2(Y_2 | 2)) \rightarrow E_r(\text{BSTOP}) \rightarrow \hat{E}_r \rightarrow \mathbb{Z}/2,
\]

satisfying (ii) and with \(\hat{E}_r = E_r(\mathcal{F}) \). From dimensional considerations and because \(j^*(k_n) \) is an infinite cycle and \(j^*(p_n)=0 \), it follows that this sequence splits:

\[
E_r(\text{BSTOP}) = \hat{E}_r \otimes E_r(A_1(Y_1 | 2)) \otimes E_r(A_2(Y_2 | 2)).
\]

Algebraic considerations lead to the pleasant fact that \(\hat{E}_\infty \) is a polynomial algebra with one generator in each degree congruent to zero mod 4.
Since

\[E_\infty = E_\infty(B\text{STOP}) = H^*(B\text{STOP}) / \text{Tor} \otimes \mathbb{Z}/2 \]

we see that \(H^*(B\text{STOP}) / \text{Tor} \) is a polynomial algebra. In particular the 4\(\ast \)-dimensional primitives of \(H_\ast(B\text{STOP}) / \text{Tor} \) are a copy of \(\mathbb{Z}_2 \).

We now employ a result of Morgan and Sullivan [8]. They construct a class \(L_n \in H^{4n}(B\text{STOP}) \) whose rational reduction is the (inverse) Hirzebruch class when restricted to \(H^{4n}(\text{BSO}; \mathbb{Q}) \) and whose restriction to \(G/\text{TOP} \) is 8 ("surgery class"). Since the coefficient of \(p_n \) in the Hirzebruch class is \(2^{a(n)-1} \) (odd), it follows that

\[2^{\pi(n)-1} \cdot \tau_{a}(b_n) = 8 \cdot \tau_{a}(s(a_1, \ldots, a_n)). \]

(\(s_n \) is the Newton polynomial.)

This equation implies that \(\tau_{a}(y_2(b_n)) \) is divisible by 2 unless \(a(n) \geq 4 + v(n) \), and from this one can inductively conclude that

\[\hat{E}_\ast = E_\ast(T). \]

REFERENCES

Department of Mathematics, Aarhus University, Aarhus, Denmark

Department of Mathematics, Stanford University, Stanford, California 94305