Let S be a commutative ring with identity. Let T be a commutative S-algebra. $A_S(T)$ denotes the higher differential algebra over S, in the sense of Berger [1] or Kawahara-Yokoyama [5], with an index set consisting of all nonnegative integers. \(\{d^n_{T/S}\}_{n=0,1,2,\ldots} \) denotes the canonical higher S-derivation of T into $A_S(T)$. In case S is the ring of all integers, we use simplified notations $A(T)$ and d^n_T ($n=0,1,2,\ldots$).

Let R denote a complete discrete valuation ring, of a valuation v of unequal characteristic with maximal ideal $m=(\pi)$. Assume that the characteristic of $k=R/m$ is p. Let P be a coefficient ring of R. Let $\{\tilde{e}_i\}_{i\in\Gamma}$ be a p-independent base of k and let c_i be a representative of \tilde{e}_i, chosen from P for every $i\in\Gamma$. The symbol $^\wedge$ means the p-adic completion of P-algebra. By arguments developed by Berger or Kawahara-Yokoyama in the cited papers, and formal smoothness and flatness of P over the prime local ring, we can deduce the following theorem.

Theorem 1. $A(P)^\wedge = P[d^nc_{i}]_{i\in\Gamma; n=0,1,2,\ldots}$ is a polynomial ring over P in distinct indeterminates d^nc_i's.

For simplicity, we denote canonical images of d^nc_i in $A(R)^\wedge$ by the same notation d^nc_i, for $i\in\Gamma$. Let $\{d^n\}_{n=0,1,2,\ldots}$ be the higher derivation of the polynomial ring $P[X]$ into $(R \otimes_{P[X]} A(P[X]))^\wedge$. Let $f(X)$ be the Eisenstein polynomial over P such that $f(\pi)=0$. Then we have the following formula for every $n\geq 1$.

\[
d^nf(X) = f'(\pi) d^nX + \sum_{j=2}^{\infty} f^{(j)}(\pi) \sum_{j_1+\cdots+j_l=j} d^{i_1}X \cdots d^{i_l}X
\]

\[
+ pG_n(d^1X, d^2X, \cdots; \cdots, d^lc_i, \cdots),
\]

where the second sum of the middle term is taken for the sets of integers.

Key words and phrases. Higher differential algebra, complete discrete valuation ring, Eisenstein polynomial, coefficient ring.
of indeterminates \(\{Z_k, W_{i,i}\} \); \(i = 1, 2, \ldots \) of weight \(n \), when we define as weight \(Z_i = weight W_{i,i} = i \), such that for a given integer \(i > 0 \) all but a finite number of coefficients of \(G_n \) belong to \(\mathfrak{m}^i \) and \(G_n \) has no terms consisting of monomials of only \(Z_k \)’s.

Solving equations \(d_1 f(X) = 0 \), \(d_2 f(X) = 0 \), \(\ldots \) successively, we obtain relations

\[
(f'(\pi))^{2n-1} d^n_R \pi = F_n(\pi, \ldots, d^n_R \pi, \ldots),
\]

where \(F_n(\pi, \ldots, W_{i,i}, \ldots) \) have properties similar to \(G_n \).

As an extended notion of Neggers’ number for derivations of order 1 in Neggers [6] and Suzuki [7], [8], we give

Definition. \(\Delta_P^\pi(\pi) = \min \{ \text{coefficient of } F_n(\pi) - (2n-1)n(f'(\pi)) \} \) is called the \(n \)th Neggers number for \((P, \pi) \), \(n = 1, 2, \ldots \).

We can show that \(\Delta_P^\pi(\pi) \) is independent of the choice of \(\{c_i\}_{i \in \mathbb{I}} \).

Henceforth for a higher derivation \(\{\partial^n\}_{n=0,1,2,\ldots} \) of \(P \) into \(P \), \(R \) into \(R \) or \(k \) into \(k \), we always assume that \(\partial^0 = \text{the identity map} \).

Theorem 2. The following four conditions are equivalent.

(i) Every higher derivation of \(P \) into \(P \) is extended to a higher derivation of \(R \) into \(R \).

(ii) \(\Delta_P^\pi(\pi) \geq 0 \) for all \(n = 1, 2, \ldots \).

(iii) \(\Delta_P^\pi(\pi) \leq 1 \) for all \(n = 1, 2, \ldots \).

(iv) Every higher derivation of \(k \) into \(k \) is induced by a higher derivation of \(R \) into \(R \).

Outline of the proof. The crucial point of the proof of this theorem is to show that (ii) implies (iii). Assume that (ii) is true and (iii) is false. Let \(n \) be the least integer such that \(\Delta_P^\pi(\pi) = 0 \). Let \(e \) be the degree of \(f(X) \).

We can show that there exists a higher derivation \(\{\partial^n\}_{n=0,1,2,\ldots} \) of \(R \) into \(R \) such that \(\partial^n \pi \in \mathfrak{m} \). On the other hand, by the expansion of \((\partial^nf)(\pi) \) according to (1) we can show that \(\partial^n \pi \in \mathfrak{m} \), which is a contradiction.

If \(k \) is perfect or if \(R \) is tamely ramified, \(R \) satisfies conditions in Theorem 2.

Theorem 3. If \(R \) satisfies conditions in Theorem 2, the ideals \((f'(\pi)), (f''(\pi)/2!), \ldots, (f^{(n)}(\pi)/n!) \) are independent of the choice of \(P \) and \(\pi \) for all \(n = 1, 2, \ldots \).

Outline of the proof. Let \(\psi \) be an isomorphism of \(P \) onto another coefficient ring \(P' \) which induces an identity map on \(k \). Expressing \(\psi \)
as a sum of all components of a higher derivation as in Heerema [3], it can be shown that ψ is extended to an automorphism λ of R by (i). ψ is extended to an isomorphism of $A_P(R)$ onto $A_P(R)$. $A_P(R)$ and $A_P(R)$ being graded algebras, we compare Fitting ideals of R-submodules of grade n of both algebras and deduce our theorem.

REFERENCES

Institute of Mathematics, Yoshida College, Kyoto University, Kyoto (606), Japan