In [2] and [3] a condition on partially ordered linear algebras (pola’s) is defined, and it is shown that Dedekind \(\sigma\)-complete polas satisfying this condition have many of the properties of function spaces. Using a theorem of H. Nakano we can show, even without the hypothesis that the pola is Dedekind \(\sigma\)-complete, that any such pola is isomorphic to a pola of continuous, almost-finite, extended-real-valued functions. If \(A\) is a pola with multiplicative identity 1 the condition mentioned is:

\[P_1. \text{ If } x \in A \text{ and } x \geq 1, \text{ then } x \text{ has an inverse and } x^{-1} \geq 0. \]

Theorem. In order for an Archimedean pola \(A\) with identity 1 to be isomorphic to a pola of continuous, almost-finite, extended-real-valued functions on a compact Hausdorff space \(X\), it is sufficient that \(P_1\) hold for \(A\). The condition is necessary also if \(A_1 = \{y \in A: \text{ there exists } a \in R^+ \text{ with } -a1 \leq y \leq a1\}\) is complete in the order unit norm derived from 1 and if the image of \(A_1\) separates points in \(X\).

Proof. The standard completion procedure for Archimedean ordered linear spaces shows that \(A\) is isomorphic with an order dense subspace \(\hat{A}\) of a Dedekind complete linear lattice \(D\). In [4, p. 150] it is shown that the multiplication on \(\hat{A}\) can be extended to \(D\) in such a way that \(D\) is a pola if the following continuity condition is satisfied: For every subset \(B\) of \(A\), \(\inf B = 0\) implies \(\inf(aB) = \inf(Ba) = 0\) for all positive elements \(a\) in \(A\). Given \(P_1\), multiplication by \((a+1)^{-1}\) shows this condition is satisfied. Thus \(D\) is a linear lattice pola and the order density of \(\hat{A}\) shows (since 1 is easily seen to be a weak order unit for \(A\)) that the image of 1 is a weak order unit for \(D\). Now \(D\) (and hence \(A\)) has a representation of the type desired by [1, Corollary, p. 625].

To prove the second statement we note that the assumptions, together with the Stone–Weierstrass theorem, give the result that if \(A \rightarrow \hat{A}\) is the isomorphism then \(\hat{A}_1 = C(X)\). Then, given any \(x\) in \(A\) such that \(x \geq 1\),

AMS (MOS) subject classifications (1970). Primary 06A70; Secondary 06A65.

Key words and phrases. Partially ordered linear algebra, representation by functions.
we can define an \(f \) in \(C(X) \) by \(f(t) = 1/\|x(t)\| \) for all \(t \) in \(X \) (with \(1/\infty \) set equal to 0). Then there exists \(z \) in \(A_1 \) such that \(z = f \) and it is clear that \(z = x^{-1} \) and \(z \geq 0 \).

Note that it is not enough to know that \(A \) separates points of \(X \) to conclude that \(A_1 \) does. This shows the need for the separation assumption. Also, it is easy to see that if \(A \) is Dedekind \(\sigma \)-complete, then \(A_1 \) is complete in the order unit norm, so this case is included.

An immediate consequence of this theorem is the useful result that if a pola is Archimedean, has an identity, and satisfies \(P_1 \), then it is necessarily commutative.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NEW MEXICO 87106