REDUCTION THEORY IN ALGEBRAIC NUMBER FIELDS

BY HANS ZASSENHAUS

Communicated by Olga Taussky Todd, February 19, 1974

When is the half-group \(GL(n, \mathbb{Z}^{\geq 0}) \) of the unimodular matrices of degree \(n \) over the half-ring \(\mathbb{Z}^{\geq 0} \) of the nonnegative integers finitely generated?\(^1\) Precisely if \(n \leq 3 \).

Here the reduction of finite real extensions \(E \) of the rational number field is based on Theorem 1 stating the finiteness of the number of all matrices of degree \(n \) over \(\mathbb{Z}^{\geq 0} \) with a given irreducible characteristic polynomial over \(\mathbb{Z} \), the rational integer ring, and on the following generalization of a well-known Frobenius theorem (Theorem 2): Let the semi-simple commutative hypercomplex system \(A \) over \(\mathbb{R} \), the real number field, contain a semiring \(H \) that is closed for the natural topology of \(A \) such that \(A = H + (-H) \), \(H \cap -H = \{0\} \) (pointed cone semiring). Then there are infinitely many \(\mathbb{R} \)-homomorphisms \(\theta_i \) (\(1 \leq i \leq s \)) of \(A \) into the complex number field \(\mathbb{C} \) such that (1) \(\bigcap_{i=1}^s \ker \theta_i = \{0\} \), (2) \(\ker \theta_i + \ker \theta_k = A \) (\(1 \leq i < k \leq s \)), (3) \(A\theta_i = \mathbb{R} \) (\(1 \leq i \leq \rho \); \(0 < \rho \leq s \)), \(\rho \) maximum, (4) for each \(\rho \)-tuple of nonnegative real numbers \(\alpha_1, \ldots, \alpha_\rho \) there is an element \(h \) of \(H \) for which \(h\theta_i = \alpha_i \) (\(1 \leq i \leq \rho \)), and (5) the set \(C = \{ (h\theta_1, \ldots, h\theta_s) | h \in H \cap \{0\} \} \) of \(C^{1 \times s} \) containing 0 and closed under multiplication, and conversely. Note that \(|\lambda_i| \leq \max_{1 \leq i \leq \rho} |\lambda_j| \) (\(1 \leq i \leq s \)) for \((\lambda_1, \ldots, \lambda_s) \) of \(C \).

Theorem 1 is applied to a dedekind module \(M \) of \(E \) that is invariant under the \(E \)-order \(\Lambda \). Any basis of \(M \) over \(\mathbb{Z} \) leading to an irreducible integral representation \(\Delta \) of \(\Lambda \) representing a given primitive element \(\omega \) of \(E \) contained in \(\Lambda \) by an integral matrix \(\Omega \) of degree \(n \) over \(\mathbb{Z}^{\geq 0} \) permits the repeated formation of certain \(\alpha \beta \)-successors (predecessors) defined as

\[S_{\alpha \beta}^s(\Omega) = T_{\alpha \beta}^{-1} \Omega T_{\alpha \beta}^s \]

\((\alpha \neq \beta, 1 \leq \alpha \leq n, 1 \leq \beta \leq n, e = \pm 1, S_{\alpha \beta}^s(\Omega) \in (\mathbb{Z}^{\geq 0})^{n \times n})\) defining an oriented finite graph \(\Gamma(\Omega) \) with a finitely presented fundamental group generated

\(^1\) This question was raised recently by G. Pall; it started the present exploration of a semigroup theoretic generalization of Lagrange's reduction theory. We utilize the subsemigroup \(S_n \) of \(GL(n, \mathbb{Z}^{\geq 0}) \) which is generated by the permutation matrices and the transvection matrices \(T_{\alpha \beta} = I_n(\delta_{\alpha \beta} \delta_{\alpha \beta}) \) (\(\alpha \neq \beta, 1 \leq \alpha \leq n, 1 \leq \beta \leq n \)) which is proper precisely if \(n \geq 3 \).
by fundamental loops corresponding to finitely many integral matrices commuting with Ω and generating a subgroup U_{ω} of the image of the unit group, $U(\Lambda)$, of Λ under Δ. An estimate based on Theorem 2 and the geometry of numbers is given such that $U_{\omega}v(-I_n) = U(\Lambda)\Delta$ if $v \geq v_0$. A method for obtaining a representative set of the ideal classes of Λ is developed in analogy to the method using continued fractions for real quadratic number field arithmetics.

A dualization method giving a new interpretation of the basic paper on ‘matrix classes corresponding to an ideal and its inverse’ (Illinois J. Math. 1 (1957), 108–113) by Olga Taussky is used in the course of the constructions.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210