Differentiable $Z_p$ actions on homotopy spheres
HTML articles powered by AMS MathViewer
- by Reinhard Schultz PDF
- Bull. Amer. Math. Soc. 80 (1974), 961-964
References
- J. C. Becker and R. E. Schultz, Spaces of equivariant self-equivalences of spheres, Bull. Amer. Math. Soc. 79 (1973), 158โ162. MR 322859, DOI 10.1090/S0002-9904-1973-13137-4
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- Robert E. Mosher and Martin C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, Publishers, New York-London, 1968. MR 0226634
- Reinhard Schultz, Improved estimates for the degree of symmetry of certain homotopy spheres, Topology 10 (1971), 227โ235. MR 283822, DOI 10.1016/0040-9383(71)90007-3
- Reinhard Schultz, Semifree circle actions and the degree of symmetry of homotopy spheres, Amer. J. Math. 93 (1971), 829โ839. MR 287548, DOI 10.2307/2373473
- Reinhard Schultz, Circle actions on homotopy spheres bounding generalized plumbing manifolds, Math. Ann. 205 (1973), 201โ210. MR 380852, DOI 10.1007/BF01349230
- Reinhard Schultz, Homotopy decompositions of equivariant function spaces. I, Math. Z. 131 (1973), 49โ75. MR 407866, DOI 10.1007/BF01213825 8. D. Sullivan, Geometric topology, I. Localization, periodicity, and Galois symmetry, M.I.T., 1970 (mimeographed).
- David L. Frank, The first exotic class of a manifold, Trans. Amer. Math. Soc. 146 (1969), 387โ395. MR 253359, DOI 10.1090/S0002-9947-1969-0253359-X
Additional Information
- Journal: Bull. Amer. Math. Soc. 80 (1974), 961-964
- MSC (1970): Primary 57E15; Secondary 57E25
- DOI: https://doi.org/10.1090/S0002-9904-1974-13596-2
- MathSciNet review: 0356105