UNBOUNDED OPERATORS WITH SPECTRAL CAPACITIES

BY I. ERDELYI

Communicated by Robert Bartle, January 15, 1974

Let \(\mathcal{S}(X) \) denote the family of subspaces (closed linear manifolds) of a Banach space \(X \), and let \(\mathcal{F} \) and \(\mathcal{R} \) represent the collection of closed and compact subsets of the complex plane \(\pi \), respectively. The superscript \(c \) stands for the complement.

1. Definition [1]. A spectral capacity in \(X \) is an application \(\mathcal{E}: \mathcal{F} \to \mathcal{S}(X) \) which satisfies the following conditions:

 (i) \(\mathcal{E}(\emptyset) = \{0\}, \mathcal{E}(\pi) = X \);

 (ii) \(\bigcap_{n=1}^{\infty} \mathcal{E}(F_n) = \mathcal{E}(\bigcap_{n=1}^{\infty} F_n), \{F_n\} \subset \mathcal{F} \);

 (iii) for every finite open cover \(\{G_i\}_{i=1}^{m} \) of \(F \in \mathcal{F} \), \(\mathcal{E}(F) = \bigcup_{i=1}^{m} \mathcal{E}(F \cap G_i) \).

In order to confine the present investigation to densely defined operators on \(X \), the following additional constraint on the spectral capacity is needed:

2. Definition. A spectral capacity \(\mathcal{E} \) will be referred to as regular if the linear manifold \(X_0 = \{x \in \mathcal{E}(K): K \in \mathcal{R}\} \) is dense in \(X \).

3. Definition. A linear operator \(T: D(T) (\subseteq X) \to X \) is said to possess a regular spectral capacity \(\mathcal{E} \) (abbrev. \(T \in \mathcal{I}(\mathcal{E}) \)) if it is closed, has a nonvoid resolvent set and satisfies the following conditions:

 (iv) \(\mathcal{E}(K) \subseteq D(T) \) for all \(K \in \mathcal{R} \);

 (v) \(T(\mathcal{E}(F) \cap D(T)) \subseteq \mathcal{E}(F) \) for all \(F \in \mathcal{F} \);

 (vi) the restriction \(T_F = T|_{\mathcal{E}(F) \cap D(T)} \) has the spectrum \(\sigma(T_F) \subseteq F, F \in \mathcal{F} \).

4. Theorem. Given \(T \in \mathcal{I}(\mathcal{E}) \). For every \(K \in \mathcal{R} \), the restriction \(T_K = T|_{\mathcal{E}(K)} \) is a (bounded) decomposable operator on \(\mathcal{E}(K) \) possessing the

\[\text{AMS (MOS) subject classifications (1970). Primary 47B99; Secondary 47A15, 47B40.} \]

\[\text{Key words and phrases. Unbounded operators, spectral capacity, decomposable operators, spectral maximal spaces, weak spectral manifolds.} \]

Copyright © American Mathematical Society 1974

1108

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
spectral capacity \mathcal{E}_K defined by

$$
(1) \quad \mathcal{E}_K(F) = \mathcal{E}(K \cap F) \quad \text{for all } F \in \mathcal{F}.
$$

In the proof it is shown that T_K is bounded by the closed graph theorem and \mathcal{E}_K, as defined by (1), is a spectral capacity for T_K.

A property which is instrumental for the subsequent study of operators in $\mathcal{F}(\mathcal{E})$ is expressed by the following

5. Theorem. Let $T \in \mathcal{L}(\mathcal{E})$ and $K \in \mathcal{R}$. The following statements are equivalent:

(i) $x \in \mathcal{E}(K)$;

(ii) there exists an X-valued function \hat{x} analytic on K^c satisfying the equation

$$
(\lambda - T)\hat{x}(\lambda) = x \quad \text{for all } \lambda \in K^c.
$$

The implication (i) \Rightarrow (ii) of the proof is based on the single-valued extension property of a decomposable operator. (ii) \Rightarrow (i) is proved first for an $x \in X_0$ with the help of a result by C. Foiaş [4]:

$$
\{y \in \mathcal{E}(L): \sigma_{T_L}(y) \subseteq K\} = \mathcal{E}(K) \quad \text{where } L(\supset K) \in \mathcal{R}.
$$

Next, for $x \notin X_0$, the density of X_0 in X and the closeness of $\mathcal{E}(K)$ complete the proof.

6. Theorem. Every $T \in \mathcal{L}(\mathcal{E})$ has a unique regular spectral capacity.

In the first stage of the proof, the application of Theorem 5 shows that any two regular spectral capacities \mathcal{E} and \mathcal{E}_1 of T agree on \mathcal{R}. Next the property expressed by Definition 2 implies that $\mathcal{E}(F) = \mathcal{E}_1(F)$ for all $F \in \mathcal{F}$.

7. Theorem. For every $K \in \mathcal{R}$, $\mathcal{E}(K)$ is a spectral maximal space of $T \in \mathcal{L}(\mathcal{E})$.

The proof is performed with the help of Theorems 4 and 5.

8. Theorem. Given $T \in \mathcal{L}(\mathcal{E})$. For every $x \in X$ there exists a nonvoid open set $U \subseteq \pi$ and a sequence $\{\hat{x}_n\}$ of X-valued functions analytic on U, with

$$
\lim_{n \to \infty} (\lambda - T)\hat{x}_n(\lambda) = x \quad \text{for all } \lambda \in U.
$$

Again, the proof is obtained by an application of Theorem 5.

We redefine E. Bishop's concept of weak spectral manifold $\mathcal{M}(F, T)$ [2, Definition 2] without the restriction of T being bounded as follows: Given $T \in \mathcal{D}(T)$ ($\subseteq X$) $\rightarrow X$ and $F \in \mathcal{F}$, $\mathcal{M}(F, T)$ is the set of all $x \in X$ which
have the property that for each $\varepsilon > 0$ there exists an X-valued function \tilde{x} analytic on F^c such that $\|x - (\lambda - T)\tilde{x}(\lambda)\| < \varepsilon$, for all $\lambda \in F^c$.

A straightforward consequence of Theorem 8 is the following

9. Corollary. Given $T \in \mathcal{F}(E)$. For every $F \in \mathcal{F}$,

$$\mathcal{E}(F) = \mathfrak{N}(F, T).$$

REFERENCES

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122.