A CONJECTURE OF M. GOLOMB ON OPTIMAL
AND NEARLY-OPTIMAL LINEAR APPROXIMATION

BY WOLFGANG DAHMEN1 AND ERNST GORLICH

Communicated by M. Golomb, May 28, 1974

In 1964, M. Golomb, in his survey paper on optimal and nearly-optimal linear approximation, presented at the General Motors Conference [3], called attention to an unsolved problem. It is the purpose of this note to solve this problem and at the same time to give a certain extension of the Haršiladze-Lozinskiï theorem.

The authors are indebted to Professor P. L. Butzer for many helpful discussions and for a critical reading of the manuscript.

Let $C_{2\pi}$ be the space of continuous 2π-periodic functions with Čebyšev norm, Π_n the class of trigonometric polynomials of degree $\leq n$, and $E_n[f] = \inf\{ \|f - p\|; p \in \Pi_n\}$ the error of best approximation of an $f \in C_{2\pi}$ by elements of Π_n, for an $n \in P = \{0, 1, 2, \cdots\}$. A sequence $\{U_n\}_{n \in P}$ of bounded linear operators on $C_{2\pi}$ into $C_{2\pi}$ is called asymptotically optimal [3] for a given subset $Y \subset C_{2\pi}$ if

$$\sup_{f \in Y} \|f - U_n f\| \leq M_Y \sup_{f \in Y} E_n[f] \quad (n \in P),$$

M_Y being some constant. $\{U_n\}$ is called optimal for Y if (1) is satisfied with $M_Y = 1$.

In particular, Y will be taken to be one of the spaces C_0^r, $r \in P$ or A_0^α, $\alpha > 0$, where C_0^r consists of those $f \in C_{2\pi}$ whose rth derivative is continuous and satisfies $\|f^{(r)}\| \leq 1$, and A_0^α is the class of functions $f(z)$ of a complex variable $z = x + iy$ which are 2π-periodic in x, real for $y = 0$, analytic in the open strip $|y| < \alpha$, continuous in $|y| \leq \alpha$, and satisfy

Key words and phrases. Best trigonometric approximation, linear polynomial operators, optimal rate of approximation, Haršiladze-Lozinskiï theorem.

1Supported by a DFG research grant (Bu 166/21) which is gratefully acknowledged.

Copyright © 1974, American Mathematical Society
By the Jackson and Bernstein theorems, a sequence \(\{U_n\} \) of bounded linear operators is asymptotically optimal for some \(C_0^r \) [some \(A_0^\alpha \)] iff \(\|f - U_n f\| = O(n^{-r}) \) \(\{O(e^{-\alpha n})\} \), \(n \to \infty \), for all \(f \in C_0^r \) \(\{f \in A_0^\alpha \} \). Moreover, since \(\sup \{E_n[f]; f \in C_0^r\} = \mu_r(n + 1)^{-r} \) for all \(n \in P \), where \(\mu_r \) denote the Favard-Achieser-Kreïn constants \((r \in P) \), a sequence \(\{U_n\} \) is optimal for some \(C_0^r \) iff \(\|f - U_n f\| \leq \mu_r(n + 1)^{-r} \) for all \(f \in C_0^r \), \(n \in P \).

Golomb's conjecture [3] consists of the following two statements.

(A) There does not exist a sequence \(\{U_n\} \) of bounded linear polynomial (i.e. \(U_n(C_{2\pi}) \subset \Pi_n \) for all \(n \in P \)) operators which is asymptotically optimal for all the classes \(C_0^r, \alpha > 0 \), and at the same time for all the classes \(A_0^\alpha, r \in P \).

(B) There does not exist a sequence of bounded linear polynomial operators which is optimal for all classes \(C_0^r, r \in P \).

In case (A), this was motivated by the fact that the Fourier partial sums \(S_n \) are asymptotically optimal for each \(A_0^\alpha, \alpha > 0 \), but not for any \(C_0^r \), \(r \in P \), whereas the de La Vallée Poussin sums \(V_n = (n - [n/2] + 1)^{-1} \cdot \sum_{k=[n/2]}^{n} S_k \) are asymptotically optimal for each \(C_0^r, r \in P \), but not for any \(A_0^\alpha, \alpha > 0 \). Concerning (B), for each class \(C_0^r \) there exists an optimal sequence of convolution type operators, but it depends on \(r \) and is unique at least among convolutions.

To prove (A) assume the contrary to be valid. If \(\{U_n\} \) is the sequence in question, define a sequence \(\{\overline{U}_n\} \) of bounded linear polynomial operators by

\[
(2) \quad \overline{U}_n f = \frac{1}{2\pi} \int_{-\pi}^{\pi} T_{-t} U_n T_t f \, dt, \quad T_t f(x) = f(x + t),
\]

according to Marcinkiewicz' device [5]. Then the \(\overline{U}_n \) are convolutions and they are asymptotically optimal for all \(C_0^r, A_0^\alpha, r \in P, \alpha > 0 \) as well. Thus the following two theorems may be applied in order to derive a contradiction.

Theorem 1. If \(\{U_n\} \) is a sequence of bounded linear polynomial operators on \(C_{2\pi} \) which is asymptotically optimal for some \(A_0^\alpha, \alpha > 0 \), then \(\lim \sup_{n \to \infty} \|U_n\| = +\infty \).

Theorem 2. If \(\{U_n\} \) is a sequence of bounded linear polynomial convolution operators on \(C_{2\pi} \) which is asymptotically optimal for some \(C_0^r \), \(r \in P \), then \(\|U_n\| = O(1), n \to \infty \).
The proof of Theorem 1 proceeds via (2) and makes use of a weak version of an inequality of Hardy-Littlewood [4] and Sidon [8] (to be found e.g. in Nikol'skii [6, p. 262]). Theorem 2 is proved by an application of Bernstein's inequality to \((U_n - V_n)f\).

For the proof of (B) assume that \(\{U_n\}\) satisfies \(\|f - U_n f\| \leq \mu_r(n + 1)^{-r}\) for all \(f \in C_0^r, n, r \in \mathbb{P}\). Then the following Lemma furnishes a contradiction to the fact that the \(\mu_r\) are bounded uniformly in \(r\).

LEMMA. If \(\{U_n\}\) is a sequence of bounded linear polynomial operators on \(C_{2\pi}\) such that for each \(r \in \mathbb{P}\)

\[
\sup_{f \in C_0^r} \|f - U_n f\| \leq M_r(n + 1)^{-r} \quad (f \in C_0^r, n \in \mathbb{P}),
\]

then \(\limsup_{r \to \infty} M_r = +\infty\).

This is a consequence of (2) and of the inequality mentioned above (see [8]).

In this context let us mention the familiar Haršiladze-Lozinskii theorem (see e.g. [2, pp. 212, 233]) which asserts that there does not exist a sequence \(\{U_n\}\) of bounded linear polynomial operators satisfying simultaneously

(a) \(U_n(U_n f) = U_n f\) for each \(n \in \mathbb{P}, f \in C_{2\pi}\), and

(b) \(\|f - U_n f\| \rightarrow 0\) as \(n \rightarrow \infty\) for each \(f \in C_{2\pi}\).

Extensions of this result have been given e.g. by Berman [1] and Sapogov [7]. As a consequence of the above, another extension is obtained on replacing the projection condition (a) by (a') or (a'') below.

(a') \(\{U_n\}\) is asymptotically optimal for some \(A_0^\alpha, \alpha > 0\).

(a'') \(\{U_n\}\) satisfies (3) for each \(r \in \mathbb{P}\), and \(M_r = O(1), r \rightarrow \infty\).

Details will appear elsewhere.

REFERENCES

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

LEHRSTUHL A FÜR MATHEMATIK, TECHNOLOGICAL UNIVERSITY, 51 AACHEN, FEDERAL REPUBLIC OF GERMANY