Every closed orientable 3-manifold is a 3-fold branched covering space of $S^3$
HTML articles powered by AMS MathViewer
- by Hugh M. Hilden PDF
- Bull. Amer. Math. Soc. 80 (1974), 1243-1244
References
-
1. J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-372.
- R. H. Fox, Construction of simply connected $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 213–216. MR 0140116 3. J. M. Montesinos, Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo, Tesis doctoral, Publicada en Departamento de Publicaciones de la Facultad de Ciencias de la Univ. de Madrid, 1971.
- José Maria Montesinos Amilibia, Reduction of the Poincaré conjecture to other geometric conjectures, Rev. Mat. Hisp.-Amer. (4) 32 (1972), 33–51 (Spanish). MR 314038
- José Maria Montesinos Amilibia, A note on a theorem of Alexander, Rev. Mat. Hisp.-Amer. (4) 32 (1972), 167–187 (Spanish). MR 385838
Additional Information
- Journal: Bull. Amer. Math. Soc. 80 (1974), 1243-1244
- MSC (1970): Primary 55A10, 57A10; Secondary 55A25
- DOI: https://doi.org/10.1090/S0002-9904-1974-13699-2
- MathSciNet review: 0350719