DIFFERENTIAL INEQUALITIES AND CARATHÉODORY FUNCTIONS

BY SANFORD MILLER

Communicated by Robert Bartle, April 15, 1974

ABSTRACT. The author proves a very general result from which it is possible to show that a regular function satisfying a differential inequality of a certain type is necessarily a Carathéodory function. This result has applications in the theory of univalent functions.

Let \(\mathcal{P} \) denote the class of Carathéodory functions; that is, functions \(p(z) = 1 + p_1 z + p_2 z^2 + \cdots \) regular in the unit disc \(\Delta \), and for which \(\text{Re} \, p(z) > 0 \).

In a recent paper [2] it was shown that if \(p(z) = 1 + p_1 z + p_2 z^2 + \cdots \) is regular in \(\Delta \), with \(p(z) \neq 0 \) in \(\Delta \), and if \(\alpha \) is a real number, then for \(z \in \Delta \)

\[
\text{Re} \left[p(z) + \alpha (zp'(z)/p(z)) \right] > 0 \Rightarrow \text{Re} \, p(z) > 0;
\]

that is, \(p(z) \in \mathcal{P} \).

In this note we replace the differential inequality in (1) by a much more general condition which will still imply that \(p(z) \) is a Carathéodory function.

DEFINITION 1. Let \(u = u_1 + u_2 i \) and \(v = v_1 + v_2 i \), and let \(\Psi \) be the set of functions \(\psi(u, v) \) satisfying:

(a) \(\psi(u, v) \) is continuous in a domain \(D \) of \(C \times C \);
(b) \((1, 0) \in D \) and \(\text{Re} \, \psi(1, 0) > 0 \);
(c) \(\text{Re} \, \psi(u_2 i, v_2) \leq 0 \) when \((u_2 i, v_2) \in D \) and \(v_2 \leq -1/2(1 + u_2^2) \).

We denote by \(\Phi \) the subset of \(\Psi \) which satisfies (a), (b) and the following condition:

(c') \(\text{Re} \, \psi(u_2 i, v_2) \leq 0 \) when \((u_2 i, v_2) \in D \) and \(v_2 \leq 0 \).

EXAMPLES. It is easy to check that each of the following functions are in \(\Psi \).

\[
\phi_1(u, v) = u + \alpha v/u, \quad \alpha \text{ real, with } D = [C - \{0\}] \times C. \\
\phi_2(u, v) = u^2 + v \text{ with } D = C \times C. \\
\phi_3(u, v) = u + \alpha v, \quad \alpha \geq 0, \text{ with } D = C \times C. \\
\phi_4(u, v) = u - v/u^2 \text{ with } D = [C - \{0\}] \times C. \\
\phi_5(u, v) = -\ln(1/2 - v) \text{ with } D = C \times \{(v_1, v_2) | v_1 < 1/2\}.
\]

AMS (MOS) subject classifications (1970). Primary 30A04, 30A20, 34A40; Secondary 30A32.

Key words and phrases. Carathéodory functions, univalent functions.

1 The author acknowledges support received from the National Academy of Sciences through its exchange program with the Academy of the Socialist Republic of Romania.
Note that ψ_1, ψ_2, ψ_3 and ψ_4 are also in Φ but $\psi_5 \notin \Phi$. The set Φ is thus a proper subset of Ψ. Though some generality is lost in considering the class Φ as opposed to considering Ψ, the former is much easier to work with algebraically.

Definition 2. Let $p(z) = 1 + p_1z + p_2z^2 + \cdots$ be regular in Δ and let $\psi \in \Psi$ with corresponding domain D. We denote by $\mathcal{P}(\psi)$ those functions $p(z)$ that satisfy:

(i) $(p(z), zp'(z)) \in D$, and

(ii) $\text{Re} \psi(p(z), zp'(z)) > 0$,

when $z \in \Delta$.

Note that $\mathcal{P}(\psi)$ is not empty, since for all $\psi \in \Psi$ it is true that $p(z) = 1 + p_1z \in \mathcal{P}(\psi)$ for p_1 sufficiently small (depending on ψ). It appears further that most $\psi \in \Psi$ provide a large number of other functions in $\mathcal{P}(\psi)$.

Our main result is the following theorem.

Theorem 1. For any $\psi \in \Psi$, $\mathcal{P}(\psi) \subset \mathcal{P}$.

In other words the Theorem states that if $\psi \in \Psi$, with corresponding domain D, and if $(p, zp') \in D$ then

(2) $\text{Re} \psi(p(z), zp'(z)) > 0 \Rightarrow \text{Re} p(z) > 0$.

Since $\Phi \subset \Psi$, we immediately have the following Corollary.

Corollary. For any $\psi \in \Phi$, $\mathcal{P}(\psi) \subset \mathcal{P}$.

The proof of the Theorem is involved and will not be presented here. However an independent proof of the Corollary follows.

Let $p(z) \in \mathcal{P}(\psi)$, and assume there exists a point $z_0 = r_0 \exp(i\theta_0) \in \Delta$ such that $\text{Re} p(z) \geq 0$ for $|z| \leq r_0$, and $\text{Re} p(z_0) = 0$. Thus $p(z_0) = ai$, where a is a real number. We now show that $z_0p'(z_0) = k$, where $k \leq 0$. Since the result is true if $p'(z_0) = 0$, we need only consider the case $p'(z_0) \neq 0$. The curve $p(r_0e^{it})$ is tangent to the imaginary axis at z_0, and so we have $\arg z_0p'(z_0) = \pi$; that is $z_0p'(z_0) = k$, where $k < 0$. Hence at z_0 we have $\text{Re} \psi(p, zp') = \text{Re} \psi(ai, k)$ with a real and $k \leq 0$. But this implies that $\text{Re} \psi(p, zp') \leq 0$ at $z = z_0$, which is a contradiction of the fact that $p(z) \in \mathcal{P}(\psi)$. Hence $\text{Re} p(z) > 0$ for $z \in \Delta$.

Remarks. If we apply the Theorem (or the Corollary) to the example $\psi_1(u, v)$, we obtain condition (1). Applying it to ψ_2, ψ_3 and ψ_4 we obtain respectively:

(3) $\text{Re}[p^2(z) + zp'(z)] > 0 \Rightarrow \text{Re} p(z) > 0$;

(4) $\text{Re}[p(z) + azp'(z)] > 0$, with $a \geq 0 \Rightarrow \text{Re} p(z) > 0$,

and

(5) $p(z) \neq 0$ and $\text{Re}[p(z) - zp'(z)p(z)] > 0 \Rightarrow \text{Re} p(z) > 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We see that for different \(\psi \in \Psi \) we can obtain different differential conditions for \(p(z) \) to be a Carathéodory function. By appropriately choosing \(\psi \in \Psi \) we can define many new subclasses of \(\mathcal{P} \) and can prove many properties of the class \(\mathcal{P} \).

The theorem has many applications in the theory of univalent functions. If we set \(p(z) = zf'(z)/f(z) \) in Theorem 1, we see from (2) that each \(\psi \in \Psi \) generates a subclass of starlike functions. In particular \(\psi_1(u, v) = u + \alpha v/u \) generates the class of alpha-convex functions [2]. Similarly by setting \(p(z) = e^{i\gamma}z f'(z)/f(z) \), where \(|\gamma| < \frac{1}{2} \), or \(p(z) = f'(z)/g'(z) \), where \(g(z) \) is convex, and using slightly modified forms of Definitions 1 and 2 and Theorem 1, we can generate many new subclasses of spiral-like and close-to-convex functions, respectively. These results, the proof of Theorem 1, and other applications will appear in a forthcoming paper [1].

REFERENCES

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BROCKPORT, NEW YORK 14420